aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/ssreflect/eqtype.v
diff options
context:
space:
mode:
authorEnrico Tassi2015-03-09 11:07:53 +0100
committerEnrico Tassi2015-03-09 11:24:38 +0100
commitfc84c27eac260dffd8f2fb1cb56d599f1e3486d9 (patch)
treec16205f1637c80833a4c4598993c29fa0fd8c373 /mathcomp/ssreflect/eqtype.v
Initial commit
Diffstat (limited to 'mathcomp/ssreflect/eqtype.v')
-rw-r--r--mathcomp/ssreflect/eqtype.v860
1 files changed, 860 insertions, 0 deletions
diff --git a/mathcomp/ssreflect/eqtype.v b/mathcomp/ssreflect/eqtype.v
new file mode 100644
index 0000000..01b0f5e
--- /dev/null
+++ b/mathcomp/ssreflect/eqtype.v
@@ -0,0 +1,860 @@
+(* (c) Copyright Microsoft Corporation and Inria. All rights reserved. *)
+Require Import ssreflect ssrfun ssrbool.
+
+(******************************************************************************)
+(* This file defines two "base" combinatorial interfaces: *)
+(* eqType == the structure for types with a decidable equality. *)
+(* Equality mixins can be made Canonical to allow generic *)
+(* folding of equality predicates. *)
+(* subType p == the structure for types isomorphic to {x : T | p x} with *)
+(* p : pred T for some type T. *)
+(* The eqType interface supports the following operations: *)
+(* x == y <=> x compares equal to y (this is a boolean test). *)
+(* x == y :> T <=> x == y at type T. *)
+(* x != y <=> x and y compare unequal. *)
+(* x != y :> T <=> " " " " at type T. *)
+(* x =P y :: a proof of reflect (x = y) (x == y); this coerces *)
+(* to x == y -> x = y. *)
+(* comparable T <-> equality on T is decidable *)
+(* := forall x y : T, decidable (x = y) *)
+(* comparableClass compT == eqType mixin/class for compT : comparable T. *)
+(* pred1 a == the singleton predicate [pred x | x == a]. *)
+(* pred2, pred3, pred4 == pair, triple, quad predicates. *)
+(* predC1 a == [pred x | x != a]. *)
+(* [predU1 a & A] == [pred x | (x == a) || (x \in A)]. *)
+(* [predD1 A & a] == [pred x | x != a & x \in A]. *)
+(* predU1 a P, predD1 P a == applicative versions of the above. *)
+(* frel f == the relation associated with f : T -> T. *)
+(* := [rel x y | f x == y]. *)
+(* invariant k f == elements of T whose k-class is f-invariant. *)
+(* := [pred x | k (f x) == k x] with f : T -> T. *)
+(* [fun x : T => e0 with a1 |-> e1, .., a_n |-> e_n] *)
+(* [eta f with a1 |-> e1, .., a_n |-> e_n] == *)
+(* the auto-expanding function that maps x = a_i to e_i, and other values *)
+(* of x to e0 (resp. f x). In the first form the `: T' is optional and x *)
+(* can occur in a_i or e_i. *)
+(* Equality on an eqType is proof-irrelevant (lemma eq_irrelevance). *)
+(* The eqType interface is implemented for most standard datatypes: *)
+(* bool, unit, void, option, prod (denoted A * B), sum (denoted A + B), *)
+(* sig (denoted {x | P}), sigT (denoted {i : I & T}). We also define *)
+(* tagged_as u v == v cast as T_(tag u) if tag v == tag u, else u. *)
+(* -> We have u == v <=> (tag u == tag v) && (tagged u == tagged_as u v). *)
+(* The subType interface supports the following operations: *)
+(* val == the generic injection from a subType S of T into T. *)
+(* For example, if u : {x : T | P}, then val u : T. *)
+(* val is injective because P is proof-irrelevant (P is in bool, *)
+(* and the is_true coercion expands to P = true). *)
+(* valP == the generic proof of P (val u) for u : subType P. *)
+(* Sub x Px == the generic constructor for a subType P; Px is a proof of P x *)
+(* and P should be inferred from the expected return type. *)
+(* insub x == the generic partial projection of T into a subType S of T. *)
+(* This returns an option S; if S : subType P then *)
+(* insub x = Some u with val u = x if P x, *)
+(* None if ~~ P x *)
+(* The insubP lemma encapsulates this dichotomy. *)
+(* P should be infered from the expected return type. *)
+(* innew x == total (non-option) variant of insub when P = predT. *)
+(* {? x | P} == option {x | P} (syntax for casting insub x). *)
+(* insubd u0 x == the generic projection with default value u0. *)
+(* := odflt u0 (insub x). *)
+(* insigd A0 x == special case of insubd for S == {x | x \in A}, where A0 is *)
+(* a proof of x0 \in A. *)
+(* insub_eq x == transparent version of insub x that expands to Some/None *)
+(* when P x can evaluate. *)
+(* The subType P interface is most often implemented using one of: *)
+(* [subType for S_val] *)
+(* where S_val : S -> T is the first projection of a type S isomorphic to *)
+(* {x : T | P}. *)
+(* [newType for S_val] *)
+(* where S_val : S -> T is the projection of a type S isomorphic to *)
+(* wrapped T; in this case P must be predT. *)
+(* [subType for S_val by Srect], [newType for S_val by Srect] *)
+(* variants of the above where the eliminator is explicitly provided. *)
+(* Here S no longer needs to be syntactically identical to {x | P x} or *)
+(* wrapped T, but it must have a derived constructor S_Sub statisfying an *)
+(* eliminator Srect identical to the one the Coq Inductive command would *)
+(* have generated, and S_val (S_Sub x Px) (resp. S_val (S_sub x) for the *)
+(* newType form) must be convertible to x. *)
+(* variant of the above when S is a wrapper type for T (so P = predT). *)
+(* [subType of S], [subType of S for S_val] *)
+(* clones the canonical subType structure for S; if S_val is specified, *)
+(* then it replaces the inferred projector. *)
+(* Subtypes inherit the eqType structure of their base types; the generic *)
+(* structure should be explicitly instantiated using the *)
+(* [eqMixin of S by <:] *)
+(* construct to declare the Equality mixin; this pattern is repeated for all *)
+(* the combinatorial interfaces (Choice, Countable, Finite). *)
+(* More generally, the eqType structure can be transfered by (partial) *)
+(* injections, using: *)
+(* InjEqMixin injf == an Equality mixin for T, using an f : T -> eT where *)
+(* eT has an eqType structure and injf : injective f. *)
+(* PcanEqMixin fK == an Equality mixin similarly derived from f and a left *)
+(* inverse partial function g and fK : pcancel f g. *)
+(* CanEqMixin fK == an Equality mixin similarly derived from f and a left *)
+(* inverse function g and fK : cancel f g. *)
+(* We add the following to the standard suffixes documented in ssrbool.v: *)
+(* 1, 2, 3, 4 -- explicit enumeration predicate for 1 (singleton), 2, 3, or *)
+(* 4 values. *)
+(******************************************************************************)
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+Unset Printing Implicit Defensive.
+
+Module Equality.
+
+Definition axiom T (e : rel T) := forall x y, reflect (x = y) (e x y).
+
+Structure mixin_of T := Mixin {op : rel T; _ : axiom op}.
+Notation class_of := mixin_of (only parsing).
+
+Section ClassDef.
+
+Structure type := Pack {sort; _ : class_of sort; _ : Type}.
+Local Coercion sort : type >-> Sortclass.
+Variables (T : Type) (cT : type).
+
+Definition class := let: Pack _ c _ := cT return class_of cT in c.
+
+Definition pack c := @Pack T c T.
+Definition clone := fun c & cT -> T & phant_id (pack c) cT => pack c.
+
+End ClassDef.
+
+Module Exports.
+Coercion sort : type >-> Sortclass.
+Notation eqType := type.
+Notation EqMixin := Mixin.
+Notation EqType T m := (@pack T m).
+Notation "[ 'eqMixin' 'of' T ]" := (class _ : mixin_of T)
+ (at level 0, format "[ 'eqMixin' 'of' T ]") : form_scope.
+Notation "[ 'eqType' 'of' T 'for' C ]" := (@clone T C _ idfun id)
+ (at level 0, format "[ 'eqType' 'of' T 'for' C ]") : form_scope.
+Notation "[ 'eqType' 'of' T ]" := (@clone T _ _ id id)
+ (at level 0, format "[ 'eqType' 'of' T ]") : form_scope.
+End Exports.
+
+End Equality.
+Export Equality.Exports.
+
+Definition eq_op T := Equality.op (Equality.class T).
+
+Lemma eqE T x : eq_op x = Equality.op (Equality.class T) x.
+Proof. by []. Qed.
+
+Lemma eqP T : Equality.axiom (@eq_op T).
+Proof. by case: T => ? []. Qed.
+Implicit Arguments eqP [T x y].
+
+Delimit Scope eq_scope with EQ.
+Open Scope eq_scope.
+
+Notation "x == y" := (eq_op x y)
+ (at level 70, no associativity) : bool_scope.
+Notation "x == y :> T" := ((x : T) == (y : T))
+ (at level 70, y at next level) : bool_scope.
+Notation "x != y" := (~~ (x == y))
+ (at level 70, no associativity) : bool_scope.
+Notation "x != y :> T" := (~~ (x == y :> T))
+ (at level 70, y at next level) : bool_scope.
+Notation "x =P y" := (eqP : reflect (x = y) (x == y))
+ (at level 70, no associativity) : eq_scope.
+Notation "x =P y :> T" := (eqP : reflect (x = y :> T) (x == y :> T))
+ (at level 70, y at next level, no associativity) : eq_scope.
+
+Prenex Implicits eq_op eqP.
+
+Lemma eq_refl (T : eqType) (x : T) : x == x. Proof. exact/eqP. Qed.
+Notation eqxx := eq_refl.
+
+Lemma eq_sym (T : eqType) (x y : T) : (x == y) = (y == x).
+Proof. exact/eqP/eqP. Qed.
+
+Hint Resolve eq_refl eq_sym.
+
+Section Contrapositives.
+
+Variable T : eqType.
+Implicit Types (A : pred T) (b : bool) (x : T).
+
+Lemma contraTeq b x y : (x != y -> ~~ b) -> b -> x = y.
+Proof. by move=> imp hyp; apply/eqP; apply: contraTT hyp. Qed.
+
+Lemma contraNeq b x y : (x != y -> b) -> ~~ b -> x = y.
+Proof. by move=> imp hyp; apply/eqP; apply: contraNT hyp. Qed.
+
+Lemma contraFeq b x y : (x != y -> b) -> b = false -> x = y.
+Proof. by move=> imp /negbT; apply: contraNeq. Qed.
+
+Lemma contraTneq b x y : (x = y -> ~~ b) -> b -> x != y.
+Proof. by move=> imp; apply: contraTN => /eqP. Qed.
+
+Lemma contraNneq b x y : (x = y -> b) -> ~~ b -> x != y.
+Proof. by move=> imp; apply: contraNN => /eqP. Qed.
+
+Lemma contraFneq b x y : (x = y -> b) -> b = false -> x != y.
+Proof. by move=> imp /negbT; apply: contraNneq. Qed.
+
+Lemma contra_eqN b x y : (b -> x != y) -> x = y -> ~~ b.
+Proof. by move=> imp /eqP; apply: contraL. Qed.
+
+Lemma contra_eqF b x y : (b -> x != y) -> x = y -> b = false.
+Proof. by move=> imp /eqP; apply: contraTF. Qed.
+
+Lemma contra_eqT b x y : (~~ b -> x != y) -> x = y -> b.
+Proof. by move=> imp /eqP; apply: contraLR. Qed.
+
+Lemma contra_eq x1 y1 x2 y2 : (x2 != y2 -> x1 != y1) -> x1 = y1 -> x2 = y2.
+Proof. by move=> imp /eqP; apply: contraTeq. Qed.
+
+Lemma contra_neq x1 y1 x2 y2 : (x2 = y2 -> x1 = y1) -> x1 != y1 -> x2 != y2.
+Proof. by move=> imp; apply: contraNneq => /imp->. Qed.
+
+Lemma memPn A x : reflect {in A, forall y, y != x} (x \notin A).
+Proof.
+apply: (iffP idP) => [notDx y | notDx]; first by apply: contraTneq => ->.
+exact: contraL (notDx x) _.
+Qed.
+
+Lemma memPnC A x : reflect {in A, forall y, x != y} (x \notin A).
+Proof. by apply: (iffP (memPn A x)) => A'x y /A'x; rewrite eq_sym. Qed.
+
+Lemma ifN_eq R x y vT vF : x != y -> (if x == y then vT else vF) = vF :> R.
+Proof. exact: ifN. Qed.
+
+Lemma ifN_eqC R x y vT vF : x != y -> (if y == x then vT else vF) = vF :> R.
+Proof. by rewrite eq_sym; apply: ifN. Qed.
+
+End Contrapositives.
+
+Implicit Arguments memPn [T A x].
+Implicit Arguments memPnC [T A x].
+
+Theorem eq_irrelevance (T : eqType) x y : forall e1 e2 : x = y :> T, e1 = e2.
+Proof.
+pose proj z e := if x =P z is ReflectT e0 then e0 else e.
+suff: injective (proj y) by rewrite /proj => injp e e'; apply: injp; case: eqP.
+pose join (e : x = _) := etrans (esym e).
+apply: can_inj (join x y (proj x (erefl x))) _.
+by case: y /; case: _ / (proj x _).
+Qed.
+
+Corollary eq_axiomK (T : eqType) (x : T) : all_equal_to (erefl x).
+Proof. move=> eq_x_x; exact: eq_irrelevance. Qed.
+
+(* We use the module system to circumvent a silly limitation that *)
+(* forbids using the same constant to coerce to different targets. *)
+Module Type EqTypePredSig.
+Parameter sort : eqType -> predArgType.
+End EqTypePredSig.
+Module MakeEqTypePred (eqmod : EqTypePredSig).
+Coercion eqmod.sort : eqType >-> predArgType.
+End MakeEqTypePred.
+Module Export EqTypePred := MakeEqTypePred Equality.
+
+Lemma unit_eqP : Equality.axiom (fun _ _ : unit => true).
+Proof. by do 2!case; left. Qed.
+
+Definition unit_eqMixin := EqMixin unit_eqP.
+Canonical unit_eqType := Eval hnf in EqType unit unit_eqMixin.
+
+(* Comparison for booleans. *)
+
+(* This is extensionally equal, but not convertible to Bool.eqb. *)
+Definition eqb b := addb (~~ b).
+
+Lemma eqbP : Equality.axiom eqb.
+Proof. by do 2!case; constructor. Qed.
+
+Canonical bool_eqMixin := EqMixin eqbP.
+Canonical bool_eqType := Eval hnf in EqType bool bool_eqMixin.
+
+Lemma eqbE : eqb = eq_op. Proof. by []. Qed.
+
+Lemma bool_irrelevance (x y : bool) (E E' : x = y) : E = E'.
+Proof. exact: eq_irrelevance. Qed.
+
+Lemma negb_add b1 b2 : ~~ (b1 (+) b2) = (b1 == b2).
+Proof. by rewrite -addNb. Qed.
+
+Lemma negb_eqb b1 b2 : (b1 != b2) = b1 (+) b2.
+Proof. by rewrite -addNb negbK. Qed.
+
+Lemma eqb_id b : (b == true) = b.
+Proof. by case: b. Qed.
+
+Lemma eqbF_neg b : (b == false) = ~~ b.
+Proof. by case: b. Qed.
+
+Lemma eqb_negLR b1 b2 : (~~ b1 == b2) = (b1 == ~~ b2).
+Proof. by case: b1; case: b2. Qed.
+
+(* Equality-based predicates. *)
+
+Notation xpred1 := (fun a1 x => x == a1).
+Notation xpred2 := (fun a1 a2 x => (x == a1) || (x == a2)).
+Notation xpred3 := (fun a1 a2 a3 x => [|| x == a1, x == a2 | x == a3]).
+Notation xpred4 :=
+ (fun a1 a2 a3 a4 x => [|| x == a1, x == a2, x == a3 | x == a4]).
+Notation xpredU1 := (fun a1 (p : pred _) x => (x == a1) || p x).
+Notation xpredC1 := (fun a1 x => x != a1).
+Notation xpredD1 := (fun (p : pred _) a1 x => (x != a1) && p x).
+
+Section EqPred.
+
+Variable T : eqType.
+
+Definition pred1 (a1 : T) := SimplPred (xpred1 a1).
+Definition pred2 (a1 a2 : T) := SimplPred (xpred2 a1 a2).
+Definition pred3 (a1 a2 a3 : T) := SimplPred (xpred3 a1 a2 a3).
+Definition pred4 (a1 a2 a3 a4 : T) := SimplPred (xpred4 a1 a2 a3 a4).
+Definition predU1 (a1 : T) p := SimplPred (xpredU1 a1 p).
+Definition predC1 (a1 : T) := SimplPred (xpredC1 a1).
+Definition predD1 p (a1 : T) := SimplPred (xpredD1 p a1).
+
+Lemma pred1E : pred1 =2 eq_op. Proof. move=> x y; exact: eq_sym. Qed.
+
+Variables (T2 : eqType) (x y : T) (z u : T2) (b : bool).
+
+Lemma predU1P : reflect (x = y \/ b) ((x == y) || b).
+Proof. apply: (iffP orP) => [] []; by [right | move/eqP; left]. Qed.
+
+Lemma pred2P : reflect (x = y \/ z = u) ((x == y) || (z == u)).
+Proof. by apply: (iffP orP) => [] [] /eqP; by [left | right]. Qed.
+
+Lemma predD1P : reflect (x <> y /\ b) ((x != y) && b).
+Proof. by apply: (iffP andP)=> [] [] // /eqP. Qed.
+
+Lemma predU1l : x = y -> (x == y) || b.
+Proof. by move->; rewrite eqxx. Qed.
+
+Lemma predU1r : b -> (x == y) || b.
+Proof. by move->; rewrite orbT. Qed.
+
+Lemma eqVneq : {x = y} + {x != y}.
+Proof. by case: eqP; [left | right]. Qed.
+
+End EqPred.
+
+Implicit Arguments predU1P [T x y b].
+Implicit Arguments pred2P [T T2 x y z u].
+Implicit Arguments predD1P [T x y b].
+Prenex Implicits pred1 pred2 pred3 pred4 predU1 predC1 predD1 predU1P.
+
+Notation "[ 'predU1' x & A ]" := (predU1 x [mem A])
+ (at level 0, format "[ 'predU1' x & A ]") : fun_scope.
+Notation "[ 'predD1' A & x ]" := (predD1 [mem A] x)
+ (at level 0, format "[ 'predD1' A & x ]") : fun_scope.
+
+(* Lemmas for reflected equality and functions. *)
+
+Section EqFun.
+
+Section Exo.
+
+Variables (aT rT : eqType) (D : pred aT) (f : aT -> rT) (g : rT -> aT).
+
+Lemma inj_eq : injective f -> forall x y, (f x == f y) = (x == y).
+Proof. by move=> inj_f x y; apply/eqP/eqP=> [|-> //]; exact: inj_f. Qed.
+
+Lemma can_eq : cancel f g -> forall x y, (f x == f y) = (x == y).
+Proof. move/can_inj; exact: inj_eq. Qed.
+
+Lemma bij_eq : bijective f -> forall x y, (f x == f y) = (x == y).
+Proof. move/bij_inj; apply: inj_eq. Qed.
+
+Lemma can2_eq : cancel f g -> cancel g f -> forall x y, (f x == y) = (x == g y).
+Proof. by move=> fK gK x y; rewrite -{1}[y]gK; exact: can_eq. Qed.
+
+Lemma inj_in_eq :
+ {in D &, injective f} -> {in D &, forall x y, (f x == f y) = (x == y)}.
+Proof. by move=> inj_f x y Dx Dy; apply/eqP/eqP=> [|-> //]; exact: inj_f. Qed.
+
+Lemma can_in_eq :
+ {in D, cancel f g} -> {in D &, forall x y, (f x == f y) = (x == y)}.
+Proof. by move/can_in_inj; exact: inj_in_eq. Qed.
+
+End Exo.
+
+Section Endo.
+
+Variable T : eqType.
+
+Definition frel f := [rel x y : T | f x == y].
+
+Lemma inv_eq f : involutive f -> forall x y : T, (f x == y) = (x == f y).
+Proof. by move=> fK; exact: can2_eq. Qed.
+
+Lemma eq_frel f f' : f =1 f' -> frel f =2 frel f'.
+Proof. by move=> eq_f x y; rewrite /= eq_f. Qed.
+
+End Endo.
+
+Variable aT : Type.
+
+(* The invariant of an function f wrt a projection k is the pred of points *)
+(* that have the same projection as their image. *)
+
+Definition invariant (rT : eqType) f (k : aT -> rT) :=
+ [pred x | k (f x) == k x].
+
+Variables (rT1 rT2 : eqType) (f : aT -> aT) (h : rT1 -> rT2) (k : aT -> rT1).
+
+Lemma invariant_comp : subpred (invariant f k) (invariant f (h \o k)).
+Proof. by move=> x eq_kfx; rewrite /= (eqP eq_kfx). Qed.
+
+Lemma invariant_inj : injective h -> invariant f (h \o k) =1 invariant f k.
+Proof. move=> inj_h x; exact: (inj_eq inj_h). Qed.
+
+End EqFun.
+
+Prenex Implicits frel.
+
+(* The coercion to rel must be explicit for derived Notations to unparse. *)
+Notation coerced_frel f := (rel_of_simpl_rel (frel f)) (only parsing).
+
+Section FunWith.
+
+Variables (aT : eqType) (rT : Type).
+
+CoInductive fun_delta : Type := FunDelta of aT & rT.
+
+Definition fwith x y (f : aT -> rT) := [fun z => if z == x then y else f z].
+
+Definition app_fdelta df f z :=
+ let: FunDelta x y := df in if z == x then y else f z.
+
+End FunWith.
+
+Prenex Implicits fwith.
+
+Notation "x |-> y" := (FunDelta x y)
+ (at level 190, no associativity,
+ format "'[hv' x '/ ' |-> y ']'") : fun_delta_scope.
+
+Delimit Scope fun_delta_scope with FUN_DELTA.
+Arguments Scope app_fdelta [_ type_scope fun_delta_scope _ _].
+
+Notation "[ 'fun' z : T => F 'with' d1 , .. , dn ]" :=
+ (SimplFunDelta (fun z : T =>
+ app_fdelta d1%FUN_DELTA .. (app_fdelta dn%FUN_DELTA (fun _ => F)) ..))
+ (at level 0, z ident, only parsing) : fun_scope.
+
+Notation "[ 'fun' z => F 'with' d1 , .. , dn ]" :=
+ (SimplFunDelta (fun z =>
+ app_fdelta d1%FUN_DELTA .. (app_fdelta dn%FUN_DELTA (fun _ => F)) ..))
+ (at level 0, z ident, format
+ "'[hv' [ '[' 'fun' z => '/ ' F ']' '/' 'with' '[' d1 , '/' .. , '/' dn ']' ] ']'"
+ ) : fun_scope.
+
+Notation "[ 'eta' f 'with' d1 , .. , dn ]" :=
+ (SimplFunDelta (fun _ =>
+ app_fdelta d1%FUN_DELTA .. (app_fdelta dn%FUN_DELTA f) ..))
+ (at level 0, format
+ "'[hv' [ '[' 'eta' '/ ' f ']' '/' 'with' '[' d1 , '/' .. , '/' dn ']' ] ']'"
+ ) : fun_scope.
+
+(* Various EqType constructions. *)
+
+Section ComparableType.
+
+Variable T : Type.
+
+Definition comparable := forall x y : T, decidable (x = y).
+
+Hypothesis Hcompare : comparable.
+
+Definition compareb x y : bool := Hcompare x y.
+
+Lemma compareP : Equality.axiom compareb.
+Proof. by move=> x y; exact: sumboolP. Qed.
+
+Definition comparableClass := EqMixin compareP.
+
+End ComparableType.
+
+Definition eq_comparable (T : eqType) : comparable T :=
+ fun x y => decP (x =P y).
+
+Section SubType.
+
+Variables (T : Type) (P : pred T).
+
+Structure subType : Type := SubType {
+ sub_sort :> Type;
+ val : sub_sort -> T;
+ Sub : forall x, P x -> sub_sort;
+ _ : forall K (_ : forall x Px, K (@Sub x Px)) u, K u;
+ _ : forall x Px, val (@Sub x Px) = x
+}.
+
+Implicit Arguments Sub [s].
+Lemma vrefl : forall x, P x -> x = x. Proof. by []. Qed.
+Definition vrefl_rect := vrefl.
+
+Definition clone_subType U v :=
+ fun sT & sub_sort sT -> U =>
+ fun c Urec cK (sT' := @SubType U v c Urec cK) & phant_id sT' sT => sT'.
+
+Variable sT : subType.
+
+CoInductive Sub_spec : sT -> Type := SubSpec x Px : Sub_spec (Sub x Px).
+
+Lemma SubP u : Sub_spec u.
+Proof. by case: sT Sub_spec SubSpec u => T' _ C rec /= _. Qed.
+
+Lemma SubK x Px : @val sT (Sub x Px) = x.
+Proof. by case: sT. Qed.
+
+Definition insub x :=
+ if @idP (P x) is ReflectT Px then @Some sT (Sub x Px) else None.
+
+Definition insubd u0 x := odflt u0 (insub x).
+
+CoInductive insub_spec x : option sT -> Type :=
+ | InsubSome u of P x & val u = x : insub_spec x (Some u)
+ | InsubNone of ~~ P x : insub_spec x None.
+
+Lemma insubP x : insub_spec x (insub x).
+Proof.
+by rewrite /insub; case: {-}_ / idP; [left; rewrite ?SubK | right; exact/negP].
+Qed.
+
+Lemma insubT x Px : insub x = Some (Sub x Px).
+Proof.
+case: insubP; last by case/negP.
+case/SubP=> y Py _ def_x; rewrite -def_x SubK in Px *.
+congr (Some (Sub _ _)); exact: bool_irrelevance.
+Qed.
+
+Lemma insubF x : P x = false -> insub x = None.
+Proof. by move/idP; case: insubP. Qed.
+
+Lemma insubN x : ~~ P x -> insub x = None.
+Proof. by move/negPf/insubF. Qed.
+
+Lemma isSome_insub : ([eta insub] : pred T) =1 P.
+Proof. by apply: fsym => x; case: insubP => // /negPf. Qed.
+
+Lemma insubK : ocancel insub (@val _).
+Proof. by move=> x; case: insubP. Qed.
+
+Lemma valP (u : sT) : P (val u).
+Proof. by case/SubP: u => x Px; rewrite SubK. Qed.
+
+Lemma valK : pcancel (@val _) insub.
+Proof. case/SubP=> x Px; rewrite SubK; exact: insubT. Qed.
+
+Lemma val_inj : injective (@val sT).
+Proof. exact: pcan_inj valK. Qed.
+
+Lemma valKd u0 : cancel (@val _) (insubd u0).
+Proof. by move=> u; rewrite /insubd valK. Qed.
+
+Lemma val_insubd u0 x : val (insubd u0 x) = if P x then x else val u0.
+Proof. by rewrite /insubd; case: insubP => [u -> | /negPf->]. Qed.
+
+Lemma insubdK u0 : {in P, cancel (insubd u0) (@val _)}.
+Proof. by move=> x Px; rewrite /= val_insubd [P x]Px. Qed.
+
+Definition insub_eq x :=
+ let Some_sub Px := Some (Sub x Px : sT) in
+ let None_sub _ := None in
+ (if P x as Px return P x = Px -> _ then Some_sub else None_sub) (erefl _).
+
+Lemma insub_eqE : insub_eq =1 insub.
+Proof.
+rewrite /insub_eq /insub => x; case: {2 3}_ / idP (erefl _) => // Px Px'.
+by congr (Some _); apply: val_inj; rewrite !SubK.
+Qed.
+
+End SubType.
+
+Implicit Arguments SubType [T P].
+Implicit Arguments Sub [T P s].
+Implicit Arguments vrefl [T P].
+Implicit Arguments vrefl_rect [T P].
+Implicit Arguments clone_subType [T P sT c Urec cK].
+Implicit Arguments insub [T P sT].
+Implicit Arguments insubT [T sT x].
+Implicit Arguments val_inj [T P sT].
+Prenex Implicits val Sub vrefl vrefl_rect insub insubd val_inj.
+
+Local Notation inlined_sub_rect :=
+ (fun K K_S u => let (x, Px) as u return K u := u in K_S x Px).
+
+Local Notation inlined_new_rect :=
+ (fun K K_S u => let (x) as u return K u := u in K_S x).
+
+Notation "[ 'subType' 'for' v ]" := (SubType _ v _ inlined_sub_rect vrefl_rect)
+ (at level 0, only parsing) : form_scope.
+
+Notation "[ 'sub' 'Type' 'for' v ]" := (SubType _ v _ _ vrefl_rect)
+ (at level 0, format "[ 'sub' 'Type' 'for' v ]") : form_scope.
+
+Notation "[ 'subType' 'for' v 'by' rec ]" := (SubType _ v _ rec vrefl)
+ (at level 0, format "[ 'subType' 'for' v 'by' rec ]") : form_scope.
+
+Notation "[ 'subType' 'of' U 'for' v ]" := (clone_subType U v id idfun)
+ (at level 0, format "[ 'subType' 'of' U 'for' v ]") : form_scope.
+
+(*
+Notation "[ 'subType' 'for' v ]" := (clone_subType _ v id idfun)
+ (at level 0, format "[ 'subType' 'for' v ]") : form_scope.
+*)
+Notation "[ 'subType' 'of' U ]" := (clone_subType U _ id id)
+ (at level 0, format "[ 'subType' 'of' U ]") : form_scope.
+
+Definition NewType T U v c Urec :=
+ let Urec' P IH := Urec P (fun x : T => IH x isT : P _) in
+ SubType U v (fun x _ => c x) Urec'.
+Implicit Arguments NewType [T U].
+
+Notation "[ 'newType' 'for' v ]" := (NewType v _ inlined_new_rect vrefl_rect)
+ (at level 0, only parsing) : form_scope.
+
+Notation "[ 'new' 'Type' 'for' v ]" := (NewType v _ _ vrefl_rect)
+ (at level 0, format "[ 'new' 'Type' 'for' v ]") : form_scope.
+
+Notation "[ 'newType' 'for' v 'by' rec ]" := (NewType v _ rec vrefl)
+ (at level 0, format "[ 'newType' 'for' v 'by' rec ]") : form_scope.
+
+Definition innew T nT x := @Sub T predT nT x (erefl true).
+Implicit Arguments innew [T nT].
+Prenex Implicits innew.
+
+Lemma innew_val T nT : cancel val (@innew T nT).
+Proof. by move=> u; apply: val_inj; exact: SubK. Qed.
+
+(* Prenex Implicits and renaming. *)
+Notation sval := (@proj1_sig _ _).
+Notation "@ 'sval'" := (@proj1_sig) (at level 10, format "@ 'sval'").
+
+Section SigProj.
+
+Variables (T : Type) (P Q : T -> Prop).
+
+Lemma svalP : forall u : sig P, P (sval u). Proof. by case. Qed.
+
+Definition s2val (u : sig2 P Q) := let: exist2 x _ _ := u in x.
+
+Lemma s2valP u : P (s2val u). Proof. by case: u. Qed.
+
+Lemma s2valP' u : Q (s2val u). Proof. by case: u. Qed.
+
+End SigProj.
+
+Prenex Implicits svalP s2val s2valP s2valP'.
+
+Canonical sig_subType T (P : pred T) : subType [eta P] :=
+ Eval hnf in [subType for @sval T [eta [eta P]]].
+
+(* Shorthand for sigma types over collective predicates. *)
+Notation "{ x 'in' A }" := {x | x \in A}
+ (at level 0, x at level 99, format "{ x 'in' A }") : type_scope.
+Notation "{ x 'in' A | P }" := {x | (x \in A) && P}
+ (at level 0, x at level 99, format "{ x 'in' A | P }") : type_scope.
+
+(* Shorthand for the return type of insub. *)
+Notation "{ ? x : T | P }" := (option {x : T | is_true P})
+ (at level 0, x at level 99, only parsing) : type_scope.
+Notation "{ ? x | P }" := {? x : _ | P}
+ (at level 0, x at level 99, format "{ ? x | P }") : type_scope.
+Notation "{ ? x 'in' A }" := {? x | x \in A}
+ (at level 0, x at level 99, format "{ ? x 'in' A }") : type_scope.
+Notation "{ ? x 'in' A | P }" := {? x | (x \in A) && P}
+ (at level 0, x at level 99, format "{ ? x 'in' A | P }") : type_scope.
+
+(* A variant of injection with default that infers a collective predicate *)
+(* from the membership proof for the default value. *)
+Definition insigd T (A : mem_pred T) x (Ax : in_mem x A) :=
+ insubd (exist [eta A] x Ax).
+
+(* There should be a rel definition for the subType equality op, but this *)
+(* seems to cause the simpl tactic to diverge on expressions involving == *)
+(* on 4+ nested subTypes in a "strict" position (e.g., after ~~). *)
+(* Definition feq f := [rel x y | f x == f y]. *)
+
+Section TransferEqType.
+
+Variables (T : Type) (eT : eqType) (f : T -> eT).
+
+Lemma inj_eqAxiom : injective f -> Equality.axiom (fun x y => f x == f y).
+Proof. by move=> f_inj x y; apply: (iffP eqP) => [|-> //]; exact: f_inj. Qed.
+
+Definition InjEqMixin f_inj := EqMixin (inj_eqAxiom f_inj).
+
+Definition PcanEqMixin g (fK : pcancel f g) := InjEqMixin (pcan_inj fK).
+
+Definition CanEqMixin g (fK : cancel f g) := InjEqMixin (can_inj fK).
+
+End TransferEqType.
+
+Section SubEqType.
+
+Variables (T : eqType) (P : pred T) (sT : subType P).
+
+Notation Local ev_ax := (fun T v => @Equality.axiom T (fun x y => v x == v y)).
+Lemma val_eqP : ev_ax sT val. Proof. exact: inj_eqAxiom val_inj. Qed.
+
+Definition sub_eqMixin := EqMixin val_eqP.
+Canonical sub_eqType := Eval hnf in EqType sT sub_eqMixin.
+
+Definition SubEqMixin :=
+ (let: SubType _ v _ _ _ as sT' := sT
+ return ev_ax sT' val -> Equality.class_of sT' in
+ fun vP : ev_ax _ v => EqMixin vP
+ ) val_eqP.
+
+Lemma val_eqE (u v : sT) : (val u == val v) = (u == v).
+Proof. by []. Qed.
+
+End SubEqType.
+
+Implicit Arguments val_eqP [T P sT x y].
+Prenex Implicits val_eqP.
+
+Notation "[ 'eqMixin' 'of' T 'by' <: ]" := (SubEqMixin _ : Equality.class_of T)
+ (at level 0, format "[ 'eqMixin' 'of' T 'by' <: ]") : form_scope.
+
+Section SigEqType.
+
+Variables (T : eqType) (P : pred T).
+
+Definition sig_eqMixin := Eval hnf in [eqMixin of {x | P x} by <:].
+Canonical sig_eqType := Eval hnf in EqType {x | P x} sig_eqMixin.
+
+End SigEqType.
+
+Section ProdEqType.
+
+Variable T1 T2 : eqType.
+
+Definition pair_eq := [rel u v : T1 * T2 | (u.1 == v.1) && (u.2 == v.2)].
+
+Lemma pair_eqP : Equality.axiom pair_eq.
+Proof.
+move=> [x1 x2] [y1 y2] /=; apply: (iffP andP) => [[]|[<- <-]] //=.
+by do 2!move/eqP->.
+Qed.
+
+Definition prod_eqMixin := EqMixin pair_eqP.
+Canonical prod_eqType := Eval hnf in EqType (T1 * T2) prod_eqMixin.
+
+Lemma pair_eqE : pair_eq = eq_op :> rel _. Proof. by []. Qed.
+
+Lemma xpair_eqE (x1 y1 : T1) (x2 y2 : T2) :
+ ((x1, x2) == (y1, y2)) = ((x1 == y1) && (x2 == y2)).
+Proof. by []. Qed.
+
+Lemma pair_eq1 (u v : T1 * T2) : u == v -> u.1 == v.1.
+Proof. by case/andP. Qed.
+
+Lemma pair_eq2 (u v : T1 * T2) : u == v -> u.2 == v.2.
+Proof. by case/andP. Qed.
+
+End ProdEqType.
+
+Implicit Arguments pair_eqP [T1 T2].
+
+Prenex Implicits pair_eqP.
+
+Definition predX T1 T2 (p1 : pred T1) (p2 : pred T2) :=
+ [pred z | p1 z.1 & p2 z.2].
+
+Notation "[ 'predX' A1 & A2 ]" := (predX [mem A1] [mem A2])
+ (at level 0, format "[ 'predX' A1 & A2 ]") : fun_scope.
+
+Section OptionEqType.
+
+Variable T : eqType.
+
+Definition opt_eq (u v : option T) : bool :=
+ oapp (fun x => oapp (eq_op x) false v) (~~ v) u.
+
+Lemma opt_eqP : Equality.axiom opt_eq.
+Proof.
+case=> [x|] [y|] /=; by [constructor | apply: (iffP eqP) => [|[]] ->].
+Qed.
+
+Canonical option_eqMixin := EqMixin opt_eqP.
+Canonical option_eqType := Eval hnf in EqType (option T) option_eqMixin.
+
+End OptionEqType.
+
+Definition tag := projS1.
+Definition tagged I T_ : forall u, T_(tag u) := @projS2 I [eta T_].
+Definition Tagged I i T_ x := @existS I [eta T_] i x.
+Implicit Arguments Tagged [I i].
+Prenex Implicits tag tagged Tagged.
+
+Section TaggedAs.
+
+Variables (I : eqType) (T_ : I -> Type).
+Implicit Types u v : {i : I & T_ i}.
+
+Definition tagged_as u v :=
+ if tag u =P tag v is ReflectT eq_uv then
+ eq_rect_r T_ (tagged v) eq_uv
+ else tagged u.
+
+Lemma tagged_asE u x : tagged_as u (Tagged T_ x) = x.
+Proof.
+by rewrite /tagged_as /=; case: eqP => // eq_uu; rewrite [eq_uu]eq_axiomK.
+Qed.
+
+End TaggedAs.
+
+Section TagEqType.
+
+Variables (I : eqType) (T_ : I -> eqType).
+Implicit Types u v : {i : I & T_ i}.
+
+Definition tag_eq u v := (tag u == tag v) && (tagged u == tagged_as u v).
+
+Lemma tag_eqP : Equality.axiom tag_eq.
+Proof.
+rewrite /tag_eq => [] [i x] [j] /=.
+case: eqP => [<-|Hij] y; last by right; case.
+by apply: (iffP eqP) => [->|<-]; rewrite tagged_asE.
+Qed.
+
+Canonical tag_eqMixin := EqMixin tag_eqP.
+Canonical tag_eqType := Eval hnf in EqType {i : I & T_ i} tag_eqMixin.
+
+Lemma tag_eqE : tag_eq = eq_op. Proof. by []. Qed.
+
+Lemma eq_tag u v : u == v -> tag u = tag v.
+Proof. by move/eqP->. Qed.
+
+Lemma eq_Tagged u x :(u == Tagged _ x) = (tagged u == x).
+Proof. by rewrite -tag_eqE /tag_eq eqxx tagged_asE. Qed.
+
+End TagEqType.
+
+Implicit Arguments tag_eqP [I T_ x y].
+Prenex Implicits tag_eqP.
+
+Section SumEqType.
+
+Variables T1 T2 : eqType.
+Implicit Types u v : T1 + T2.
+
+Definition sum_eq u v :=
+ match u, v with
+ | inl x, inl y | inr x, inr y => x == y
+ | _, _ => false
+ end.
+
+Lemma sum_eqP : Equality.axiom sum_eq.
+Proof. case=> x [] y /=; by [right | apply: (iffP eqP) => [->|[->]]]. Qed.
+
+Canonical sum_eqMixin := EqMixin sum_eqP.
+Canonical sum_eqType := Eval hnf in EqType (T1 + T2) sum_eqMixin.
+
+Lemma sum_eqE : sum_eq = eq_op. Proof. by []. Qed.
+
+End SumEqType.
+
+Implicit Arguments sum_eqP [T1 T2 x y].
+Prenex Implicits sum_eqP.