aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/ssreflect/eqtype.v
diff options
context:
space:
mode:
authorKazuhiko Sakaguchi2019-11-29 01:19:33 +0900
committerKazuhiko Sakaguchi2019-12-28 17:45:40 +0900
commita06d61a8e226eeabc52f1a22e469dca1e6077065 (patch)
tree7a78b4f2f84f360127eecc1883630891d58a8a92 /mathcomp/ssreflect/eqtype.v
parent52f106adee9009924765adc1a94de9dc4f23f56d (diff)
Refactoring and linting especially polydiv
- Replace `altP eqP` and `altP (_ =P _)` with `eqVneq`: The improved `eqVneq` lemma (#351) is redesigned as a comparison predicate and introduces a hypothesis in the form of `x != y` in the second case. Thus, `case: (altP eqP)`, `case: (altP (x =P _))` and `case: (altP (x =P y))` idioms can be replaced with `case: eqVneq`, `case: (eqVneq x)` and `case: (eqVneq x y)` respectively. This replacement slightly simplifies and reduces proof scripts. - use `have [] :=` rather than `case` if it is better. - `by apply:` -> `exact:`. - `apply/lem1; apply/lem2` or `apply: lem1; apply: lem2` -> `apply/lem1/lem2`. - `move/lem1; move/lem2` -> `move/lem1/lem2`. - Remove `GRing.` prefix if applicable. - `negbTE` -> `negPf`, `eq_refl` -> `eqxx` and `sym_equal` -> `esym`.
Diffstat (limited to 'mathcomp/ssreflect/eqtype.v')
-rw-r--r--mathcomp/ssreflect/eqtype.v6
1 files changed, 3 insertions, 3 deletions
diff --git a/mathcomp/ssreflect/eqtype.v b/mathcomp/ssreflect/eqtype.v
index e9da3ec..f5d95e8 100644
--- a/mathcomp/ssreflect/eqtype.v
+++ b/mathcomp/ssreflect/eqtype.v
@@ -916,9 +916,9 @@ Hypothesis aR'E : forall x y, aR' x y = (x != y) && (aR x y).
Hypothesis rR'E : forall x y, rR' x y = (x != y) && (rR x y).
Let aRE x y : aR x y = (x == y) || (aR' x y).
-Proof. by rewrite aR'E; case: (altP eqP) => //= ->; apply: aR_refl. Qed.
+Proof. by rewrite aR'E; case: eqVneq => //= ->; apply: aR_refl. Qed.
Let rRE x y : rR x y = (x == y) || (rR' x y).
-Proof. by rewrite rR'E; case: (altP eqP) => //= ->; apply: rR_refl. Qed.
+Proof. by rewrite rR'E; case: eqVneq => //= ->; apply: rR_refl. Qed.
Section InDom.
Variable D : pred aT.
@@ -962,7 +962,7 @@ Lemma total_homo_mono_in : total aR ->
{in D &, {mono f : x y / aR x y >-> rR x y}}.
Proof.
move=> aR_tot mf x y xD yD.
-have [->|neq_xy] := altP (x =P y); first by rewrite ?eqxx ?aR_refl ?rR_refl.
+have [->|neq_xy] := eqVneq x y; first by rewrite ?eqxx ?aR_refl ?rR_refl.
have [xy|] := (boolP (aR x y)); first by rewrite rRE mf ?orbT// aR'E neq_xy.
have /orP [->//|] := aR_tot x y.
rewrite aRE eq_sym (negPf neq_xy) /= => /mf -/(_ yD xD).