aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/ssreflect/eqtype.v
diff options
context:
space:
mode:
authorJasper Hugunin2018-02-21 22:41:00 -0800
committerJasper Hugunin2018-02-21 22:41:00 -0800
commit19f9b3e774db1dedca149675f022d65cdeab7e6c (patch)
treec7ef14c60588c4595fc7d0b1740383d4429f5fcb /mathcomp/ssreflect/eqtype.v
parent13f26ccc09f87b222f9601892f085276a6ddb8c0 (diff)
Change Implicit Arguments to Arguments in ssreflect
Diffstat (limited to 'mathcomp/ssreflect/eqtype.v')
-rw-r--r--mathcomp/ssreflect/eqtype.v44
1 files changed, 22 insertions, 22 deletions
diff --git a/mathcomp/ssreflect/eqtype.v b/mathcomp/ssreflect/eqtype.v
index 3e8230e..9772b84 100644
--- a/mathcomp/ssreflect/eqtype.v
+++ b/mathcomp/ssreflect/eqtype.v
@@ -147,7 +147,7 @@ Proof. by []. Qed.
Lemma eqP T : Equality.axiom (@eq_op T).
Proof. by case: T => ? []. Qed.
-Implicit Arguments eqP [T x y].
+Arguments eqP [T x y].
Delimit Scope eq_scope with EQ.
Open Scope eq_scope.
@@ -230,8 +230,8 @@ Proof. by rewrite eq_sym; apply: ifN. Qed.
End Contrapositives.
-Implicit Arguments memPn [T1 A x].
-Implicit Arguments memPnC [T1 A x].
+Arguments memPn [T1 A x].
+Arguments memPnC [T1 A x].
Theorem eq_irrelevance (T : eqType) x y : forall e1 e2 : x = y :> T, e1 = e2.
Proof.
@@ -339,9 +339,9 @@ Proof. by case: eqP; [left | right]. Qed.
End EqPred.
-Implicit Arguments predU1P [T x y b].
-Implicit Arguments pred2P [T T2 x y z u].
-Implicit Arguments predD1P [T x y b].
+Arguments predU1P [T x y b].
+Arguments pred2P [T T2 x y z u].
+Arguments predD1P [T x y b].
Prenex Implicits pred1 pred2 pred3 pred4 predU1 predC1 predD1 predU1P.
Notation "[ 'predU1' x & A ]" := (predU1 x [mem A])
@@ -491,7 +491,7 @@ Structure subType : Type := SubType {
_ : forall x Px, val (@Sub x Px) = x
}.
-Implicit Arguments Sub [s].
+Arguments Sub [s].
Lemma vrefl : forall x, P x -> x = x. Proof. by []. Qed.
Definition vrefl_rect := vrefl.
@@ -572,14 +572,14 @@ Qed.
End SubType.
-Implicit Arguments SubType [T P].
-Implicit Arguments Sub [T P s].
-Implicit Arguments vrefl [T P].
-Implicit Arguments vrefl_rect [T P].
-Implicit Arguments clone_subType [T P sT c Urec cK].
-Implicit Arguments insub [T P sT].
-Implicit Arguments insubT [T sT x].
-Implicit Arguments val_inj [T P sT].
+Arguments SubType [T P].
+Arguments Sub [T P s].
+Arguments vrefl [T P].
+Arguments vrefl_rect [T P].
+Arguments clone_subType [T P] U v [sT] _ [c Urec cK].
+Arguments insub [T P sT].
+Arguments insubT [T] P [sT x].
+Arguments val_inj [T P sT].
Prenex Implicits val Sub vrefl vrefl_rect insub insubd val_inj.
Local Notation inlined_sub_rect :=
@@ -610,7 +610,7 @@ Notation "[ 'subType' 'of' U ]" := (clone_subType U _ id id)
Definition NewType T U v c Urec :=
let Urec' P IH := Urec P (fun x : T => IH x isT : P _) in
SubType U v (fun x _ => c x) Urec'.
-Implicit Arguments NewType [T U].
+Arguments NewType [T U].
Notation "[ 'newType' 'for' v ]" := (NewType v _ inlined_new_rect vrefl_rect)
(at level 0, only parsing) : form_scope.
@@ -622,7 +622,7 @@ Notation "[ 'newType' 'for' v 'by' rec ]" := (NewType v _ rec vrefl)
(at level 0, format "[ 'newType' 'for' v 'by' rec ]") : form_scope.
Definition innew T nT x := @Sub T predT nT x (erefl true).
-Implicit Arguments innew [T nT].
+Arguments innew [T nT].
Prenex Implicits innew.
Lemma innew_val T nT : cancel val (@innew T nT).
@@ -713,7 +713,7 @@ Proof. by []. Qed.
End SubEqType.
-Implicit Arguments val_eqP [T P sT x y].
+Arguments val_eqP [T P sT x y].
Prenex Implicits val_eqP.
Notation "[ 'eqMixin' 'of' T 'by' <: ]" := (SubEqMixin _ : Equality.class_of T)
@@ -757,7 +757,7 @@ Proof. by case/andP. Qed.
End ProdEqType.
-Implicit Arguments pair_eqP [T1 T2].
+Arguments pair_eqP [T1 T2].
Prenex Implicits pair_eqP.
@@ -787,7 +787,7 @@ End OptionEqType.
Definition tag := projS1.
Definition tagged I T_ : forall u, T_(tag u) := @projS2 I [eta T_].
Definition Tagged I i T_ x := @existS I [eta T_] i x.
-Implicit Arguments Tagged [I i].
+Arguments Tagged [I i].
Prenex Implicits tag tagged Tagged.
Section TaggedAs.
@@ -834,7 +834,7 @@ Proof. by rewrite -tag_eqE /tag_eq eqxx tagged_asE. Qed.
End TagEqType.
-Implicit Arguments tag_eqP [I T_ x y].
+Arguments tag_eqP [I T_ x y].
Prenex Implicits tag_eqP.
Section SumEqType.
@@ -858,5 +858,5 @@ Lemma sum_eqE : sum_eq = eq_op. Proof. by []. Qed.
End SumEqType.
-Implicit Arguments sum_eqP [T1 T2 x y].
+Arguments sum_eqP [T1 T2 x y].
Prenex Implicits sum_eqP.