diff options
| author | Jasper Hugunin | 2018-02-21 22:41:00 -0800 |
|---|---|---|
| committer | Jasper Hugunin | 2018-02-21 22:41:00 -0800 |
| commit | 19f9b3e774db1dedca149675f022d65cdeab7e6c (patch) | |
| tree | c7ef14c60588c4595fc7d0b1740383d4429f5fcb /mathcomp/ssreflect/eqtype.v | |
| parent | 13f26ccc09f87b222f9601892f085276a6ddb8c0 (diff) | |
Change Implicit Arguments to Arguments in ssreflect
Diffstat (limited to 'mathcomp/ssreflect/eqtype.v')
| -rw-r--r-- | mathcomp/ssreflect/eqtype.v | 44 |
1 files changed, 22 insertions, 22 deletions
diff --git a/mathcomp/ssreflect/eqtype.v b/mathcomp/ssreflect/eqtype.v index 3e8230e..9772b84 100644 --- a/mathcomp/ssreflect/eqtype.v +++ b/mathcomp/ssreflect/eqtype.v @@ -147,7 +147,7 @@ Proof. by []. Qed. Lemma eqP T : Equality.axiom (@eq_op T). Proof. by case: T => ? []. Qed. -Implicit Arguments eqP [T x y]. +Arguments eqP [T x y]. Delimit Scope eq_scope with EQ. Open Scope eq_scope. @@ -230,8 +230,8 @@ Proof. by rewrite eq_sym; apply: ifN. Qed. End Contrapositives. -Implicit Arguments memPn [T1 A x]. -Implicit Arguments memPnC [T1 A x]. +Arguments memPn [T1 A x]. +Arguments memPnC [T1 A x]. Theorem eq_irrelevance (T : eqType) x y : forall e1 e2 : x = y :> T, e1 = e2. Proof. @@ -339,9 +339,9 @@ Proof. by case: eqP; [left | right]. Qed. End EqPred. -Implicit Arguments predU1P [T x y b]. -Implicit Arguments pred2P [T T2 x y z u]. -Implicit Arguments predD1P [T x y b]. +Arguments predU1P [T x y b]. +Arguments pred2P [T T2 x y z u]. +Arguments predD1P [T x y b]. Prenex Implicits pred1 pred2 pred3 pred4 predU1 predC1 predD1 predU1P. Notation "[ 'predU1' x & A ]" := (predU1 x [mem A]) @@ -491,7 +491,7 @@ Structure subType : Type := SubType { _ : forall x Px, val (@Sub x Px) = x }. -Implicit Arguments Sub [s]. +Arguments Sub [s]. Lemma vrefl : forall x, P x -> x = x. Proof. by []. Qed. Definition vrefl_rect := vrefl. @@ -572,14 +572,14 @@ Qed. End SubType. -Implicit Arguments SubType [T P]. -Implicit Arguments Sub [T P s]. -Implicit Arguments vrefl [T P]. -Implicit Arguments vrefl_rect [T P]. -Implicit Arguments clone_subType [T P sT c Urec cK]. -Implicit Arguments insub [T P sT]. -Implicit Arguments insubT [T sT x]. -Implicit Arguments val_inj [T P sT]. +Arguments SubType [T P]. +Arguments Sub [T P s]. +Arguments vrefl [T P]. +Arguments vrefl_rect [T P]. +Arguments clone_subType [T P] U v [sT] _ [c Urec cK]. +Arguments insub [T P sT]. +Arguments insubT [T] P [sT x]. +Arguments val_inj [T P sT]. Prenex Implicits val Sub vrefl vrefl_rect insub insubd val_inj. Local Notation inlined_sub_rect := @@ -610,7 +610,7 @@ Notation "[ 'subType' 'of' U ]" := (clone_subType U _ id id) Definition NewType T U v c Urec := let Urec' P IH := Urec P (fun x : T => IH x isT : P _) in SubType U v (fun x _ => c x) Urec'. -Implicit Arguments NewType [T U]. +Arguments NewType [T U]. Notation "[ 'newType' 'for' v ]" := (NewType v _ inlined_new_rect vrefl_rect) (at level 0, only parsing) : form_scope. @@ -622,7 +622,7 @@ Notation "[ 'newType' 'for' v 'by' rec ]" := (NewType v _ rec vrefl) (at level 0, format "[ 'newType' 'for' v 'by' rec ]") : form_scope. Definition innew T nT x := @Sub T predT nT x (erefl true). -Implicit Arguments innew [T nT]. +Arguments innew [T nT]. Prenex Implicits innew. Lemma innew_val T nT : cancel val (@innew T nT). @@ -713,7 +713,7 @@ Proof. by []. Qed. End SubEqType. -Implicit Arguments val_eqP [T P sT x y]. +Arguments val_eqP [T P sT x y]. Prenex Implicits val_eqP. Notation "[ 'eqMixin' 'of' T 'by' <: ]" := (SubEqMixin _ : Equality.class_of T) @@ -757,7 +757,7 @@ Proof. by case/andP. Qed. End ProdEqType. -Implicit Arguments pair_eqP [T1 T2]. +Arguments pair_eqP [T1 T2]. Prenex Implicits pair_eqP. @@ -787,7 +787,7 @@ End OptionEqType. Definition tag := projS1. Definition tagged I T_ : forall u, T_(tag u) := @projS2 I [eta T_]. Definition Tagged I i T_ x := @existS I [eta T_] i x. -Implicit Arguments Tagged [I i]. +Arguments Tagged [I i]. Prenex Implicits tag tagged Tagged. Section TaggedAs. @@ -834,7 +834,7 @@ Proof. by rewrite -tag_eqE /tag_eq eqxx tagged_asE. Qed. End TagEqType. -Implicit Arguments tag_eqP [I T_ x y]. +Arguments tag_eqP [I T_ x y]. Prenex Implicits tag_eqP. Section SumEqType. @@ -858,5 +858,5 @@ Lemma sum_eqE : sum_eq = eq_op. Proof. by []. Qed. End SumEqType. -Implicit Arguments sum_eqP [T1 T2 x y]. +Arguments sum_eqP [T1 T2 x y]. Prenex Implicits sum_eqP. |
