aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/ssreflect/div.v
diff options
context:
space:
mode:
authorEnrico2018-03-03 10:30:33 +0100
committerGitHub2018-03-03 10:30:33 +0100
commit6f075b64b936de9ee4fa79ea4dc1d2fb9b9cf2c8 (patch)
tree59cc350ed0be586e871e56e41b48939b08032929 /mathcomp/ssreflect/div.v
parent22692863c2b51cb6b3220e9601d7c237b1830f18 (diff)
parentfe058c3300cf2385f1079fa906cbd13cd2349286 (diff)
Merge pull request #179 from jashug/deprecate-implicit-arguments
Remove Implicit Arguments command in favor of Arguments
Diffstat (limited to 'mathcomp/ssreflect/div.v')
-rw-r--r--mathcomp/ssreflect/div.v10
1 files changed, 5 insertions, 5 deletions
diff --git a/mathcomp/ssreflect/div.v b/mathcomp/ssreflect/div.v
index 4172430..59c19ce 100644
--- a/mathcomp/ssreflect/div.v
+++ b/mathcomp/ssreflect/div.v
@@ -130,11 +130,11 @@ rewrite {2}/divn; case: edivnP; rewrite d_gt0 /= => q r ->{m} lt_rd.
rewrite mulnDr mulnCA divnMDl; last by rewrite muln_gt0 p_gt0.
by rewrite addnC divn_small // ltn_pmul2l.
Qed.
-Implicit Arguments divnMl [p m d].
+Arguments divnMl [p m d].
Lemma divnMr p m d : p > 0 -> m * p %/ (d * p) = m %/ d.
Proof. by move=> p_gt0; rewrite -!(mulnC p) divnMl. Qed.
-Implicit Arguments divnMr [p m d].
+Arguments divnMr [p m d].
Lemma ltn_mod m d : (m %% d < d) = (0 < d).
Proof. by case: d => // d; rewrite modn_def; case: edivnP. Qed.
@@ -302,7 +302,7 @@ Proof.
apply: (iffP eqP) => [md0 | [k ->]]; last by rewrite modnMl.
by exists (m %/ d); rewrite {1}(divn_eq m d) md0 addn0.
Qed.
-Implicit Arguments dvdnP [d m].
+Arguments dvdnP [d m].
Prenex Implicits dvdnP.
Lemma dvdn0 d : d %| 0.
@@ -401,11 +401,11 @@ Qed.
Lemma dvdn_pmul2l p d m : 0 < p -> (p * d %| p * m) = (d %| m).
Proof. by case: p => // p _; rewrite /dvdn -muln_modr // muln_eq0. Qed.
-Implicit Arguments dvdn_pmul2l [p m d].
+Arguments dvdn_pmul2l [p d m].
Lemma dvdn_pmul2r p d m : 0 < p -> (d * p %| m * p) = (d %| m).
Proof. by move=> p_gt0; rewrite -!(mulnC p) dvdn_pmul2l. Qed.
-Implicit Arguments dvdn_pmul2r [p m d].
+Arguments dvdn_pmul2r [p d m].
Lemma dvdn_divLR p d m : 0 < p -> p %| d -> (d %/ p %| m) = (d %| m * p).
Proof. by move=> /(@dvdn_pmul2r p _ m) <- /divnK->. Qed.