diff options
| author | Kazuhiko Sakaguchi | 2020-05-16 09:02:13 +0900 |
|---|---|---|
| committer | Kazuhiko Sakaguchi | 2020-05-16 09:30:39 +0900 |
| commit | 37a49513f22a3f792a1ac3241962a7d17455f7e5 (patch) | |
| tree | 3f3f5a094547ae1166a21cb7c5350c7e5a87404a /mathcomp/ssreflect/div.v | |
| parent | 35bd8708dacfb508f896d957d7b1189ca7decb3e (diff) | |
A few more revisions
Diffstat (limited to 'mathcomp/ssreflect/div.v')
| -rw-r--r-- | mathcomp/ssreflect/div.v | 14 |
1 files changed, 5 insertions, 9 deletions
diff --git a/mathcomp/ssreflect/div.v b/mathcomp/ssreflect/div.v index 9dddcef..17e3ac4 100644 --- a/mathcomp/ssreflect/div.v +++ b/mathcomp/ssreflect/div.v @@ -330,9 +330,7 @@ by move=> d_even; rewrite [in RHS](divn_eq m d) oddD odd_mul d_even andbF. Qed. Lemma modnXm m n a : (a %% n) ^ m = a ^ m %[mod n]. -Proof. -by elim: m => // m IHm; rewrite !expnS -modnMmr IHm modnMml modnMmr. -Qed. +Proof. by elim: m => // m IHm; rewrite !expnS -modnMmr IHm modnMml modnMmr. Qed. (** Divisibility **) @@ -390,9 +388,7 @@ Lemma dvdn2 n : (2 %| n) = ~~ odd n. Proof. by rewrite /dvdn modn2; case (odd n). Qed. Lemma dvdn_odd m n : m %| n -> odd n -> odd m. -Proof. -by move=> m_dv_n; apply: contraTT; rewrite -!dvdn2 => /dvdn_trans->. -Qed. +Proof. by move=> m_dv_n; apply: contraTT; rewrite -!dvdn2 => /dvdn_trans->. Qed. Lemma divnK d m : d %| m -> m %/ d * d = m. Proof. by rewrite dvdn_eq; move/eqP. Qed. @@ -715,9 +711,9 @@ have m_gt0: 0 < m by rewrite addn_gt0 r_gt0 orbT. have d_gt0: 0 < d by rewrite gcdn_gt0 m_gt0. move/IHq=> {IHq} IHq le_kn_r le_kr_n def_d; apply: IHq => //; rewrite -/d. by rewrite mulnDl leq_add // -mulnA leq_mul2l le_kr_n orbT. -apply: (@addIn d); rewrite -!addnA addnn addnCA mulnDr -addnA addnCA. -rewrite /km mulnDl mulnCA mulnA -addnA; congr (_ + _). -by rewrite -def_d addnC -addnA -mulnDl -mulnDr addn_negb -mul2n. +apply: (@addIn d); rewrite mulnDr -addnA addnACA -def_d addnACA mulnA. +rewrite -!mulnDl -mulnDr -addnA [kr * _]mulnC; congr addn. +by rewrite addnC addn_negb muln1 mul2n addnn. Qed. Lemma Bezoutl m n : m > 0 -> {a | a < m & m %| gcdn m n + a * n}. |
