aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/ssreflect/div.v
diff options
context:
space:
mode:
authorKazuhiko Sakaguchi2020-05-16 09:02:13 +0900
committerKazuhiko Sakaguchi2020-05-16 09:30:39 +0900
commit37a49513f22a3f792a1ac3241962a7d17455f7e5 (patch)
tree3f3f5a094547ae1166a21cb7c5350c7e5a87404a /mathcomp/ssreflect/div.v
parent35bd8708dacfb508f896d957d7b1189ca7decb3e (diff)
A few more revisions
Diffstat (limited to 'mathcomp/ssreflect/div.v')
-rw-r--r--mathcomp/ssreflect/div.v14
1 files changed, 5 insertions, 9 deletions
diff --git a/mathcomp/ssreflect/div.v b/mathcomp/ssreflect/div.v
index 9dddcef..17e3ac4 100644
--- a/mathcomp/ssreflect/div.v
+++ b/mathcomp/ssreflect/div.v
@@ -330,9 +330,7 @@ by move=> d_even; rewrite [in RHS](divn_eq m d) oddD odd_mul d_even andbF.
Qed.
Lemma modnXm m n a : (a %% n) ^ m = a ^ m %[mod n].
-Proof.
-by elim: m => // m IHm; rewrite !expnS -modnMmr IHm modnMml modnMmr.
-Qed.
+Proof. by elim: m => // m IHm; rewrite !expnS -modnMmr IHm modnMml modnMmr. Qed.
(** Divisibility **)
@@ -390,9 +388,7 @@ Lemma dvdn2 n : (2 %| n) = ~~ odd n.
Proof. by rewrite /dvdn modn2; case (odd n). Qed.
Lemma dvdn_odd m n : m %| n -> odd n -> odd m.
-Proof.
-by move=> m_dv_n; apply: contraTT; rewrite -!dvdn2 => /dvdn_trans->.
-Qed.
+Proof. by move=> m_dv_n; apply: contraTT; rewrite -!dvdn2 => /dvdn_trans->. Qed.
Lemma divnK d m : d %| m -> m %/ d * d = m.
Proof. by rewrite dvdn_eq; move/eqP. Qed.
@@ -715,9 +711,9 @@ have m_gt0: 0 < m by rewrite addn_gt0 r_gt0 orbT.
have d_gt0: 0 < d by rewrite gcdn_gt0 m_gt0.
move/IHq=> {IHq} IHq le_kn_r le_kr_n def_d; apply: IHq => //; rewrite -/d.
by rewrite mulnDl leq_add // -mulnA leq_mul2l le_kr_n orbT.
-apply: (@addIn d); rewrite -!addnA addnn addnCA mulnDr -addnA addnCA.
-rewrite /km mulnDl mulnCA mulnA -addnA; congr (_ + _).
-by rewrite -def_d addnC -addnA -mulnDl -mulnDr addn_negb -mul2n.
+apply: (@addIn d); rewrite mulnDr -addnA addnACA -def_d addnACA mulnA.
+rewrite -!mulnDl -mulnDr -addnA [kr * _]mulnC; congr addn.
+by rewrite addnC addn_negb muln1 mul2n addnn.
Qed.
Lemma Bezoutl m n : m > 0 -> {a | a < m & m %| gcdn m n + a * n}.