diff options
| author | Cyril Cohen | 2020-09-29 13:24:57 +0200 |
|---|---|---|
| committer | GitHub | 2020-09-29 13:24:57 +0200 |
| commit | eb47a0a031efab69f9a39c8cf356e2304c1e318f (patch) | |
| tree | 000c3c9d321c68075b672c4367805b7bbcc8ee90 /mathcomp/solvable | |
| parent | 5fc83c2c7610f7034e5c0e92b18093deb340995d (diff) | |
| parent | 544d89a7711be2f25c3a845130e5cede590bc766 (diff) | |
Merge pull request #592 from chdoc/mem_imset
Fix naming inconsistencies between `imset` and `map` lemmas.
Diffstat (limited to 'mathcomp/solvable')
| -rw-r--r-- | mathcomp/solvable/abelian.v | 10 | ||||
| -rw-r--r-- | mathcomp/solvable/center.v | 2 | ||||
| -rw-r--r-- | mathcomp/solvable/commutator.v | 4 | ||||
| -rw-r--r-- | mathcomp/solvable/cyclic.v | 6 | ||||
| -rw-r--r-- | mathcomp/solvable/extremal.v | 8 | ||||
| -rw-r--r-- | mathcomp/solvable/finmodule.v | 12 | ||||
| -rw-r--r-- | mathcomp/solvable/hall.v | 2 | ||||
| -rw-r--r-- | mathcomp/solvable/jordanholder.v | 2 | ||||
| -rw-r--r-- | mathcomp/solvable/maximal.v | 8 | ||||
| -rw-r--r-- | mathcomp/solvable/primitive_action.v | 6 |
10 files changed, 30 insertions, 30 deletions
diff --git a/mathcomp/solvable/abelian.v b/mathcomp/solvable/abelian.v index 3a5caeb..469c649 100644 --- a/mathcomp/solvable/abelian.v +++ b/mathcomp/solvable/abelian.v @@ -1153,7 +1153,7 @@ Proof. rewrite morphim_gen ?genS //; last by rewrite -gen_subG Ohm_sub. apply/subsetP=> fx /morphimP[x Gx]; rewrite inE Gx /=. case/OhmPredP=> p p_pr xpn_1 -> {fx}. -rewrite inE morphimEdom mem_imset //=; apply/OhmPredP; exists p => //. +rewrite inE morphimEdom imset_f //=; apply/OhmPredP; exists p => //. by rewrite -morphX // xpn_1 morph1. Qed. @@ -1251,7 +1251,7 @@ move=> pG; apply/eqP; rewrite eqEsubset !gen_subG; apply/andP. do [split; apply/subsetP=> xpn; case/imsetP=> x] => [|Gx ->]; last first. by rewrite Mho_p_elt ?(mem_p_elt pG). case/setIdP=> Gx _ ->; have [-> | ntx] := eqVneq x 1; first by rewrite expg1n. -by rewrite (pdiv_p_elt (mem_p_elt pG Gx) ntx) mem_gen //; apply: mem_imset. +by rewrite (pdiv_p_elt (mem_p_elt pG Gx) ntx) mem_gen //; apply: imset_f. Qed. Lemma MhoEabelian p G : @@ -1260,7 +1260,7 @@ Proof. move=> pG cGG; rewrite (MhoE pG); rewrite gen_set_id //; apply/group_setP. split=> [|xn yn]; first by apply/imsetP; exists 1; rewrite ?expg1n. case/imsetP=> x Gx ->; case/imsetP=> y Gy ->. -by rewrite -expgMn; [apply: mem_imset; rewrite groupM | apply: (centsP cGG)]. +by rewrite -expgMn; [apply: imset_f; rewrite groupM | apply: (centsP cGG)]. Qed. Lemma trivg_Mho G : 'Mho^n(G) == 1 -> 'Ohm_n(G) == G. @@ -1269,7 +1269,7 @@ rewrite -subG1 gen_subG eqEsubset Ohm_sub /= => Gp1. rewrite -{1}(Sylow_gen G) genS //; apply/bigcupsP=> P. case/SylowP=> p p_pr /and3P[sPG pP _]; apply/subsetP=> x Px. have Gx := subsetP sPG x Px; rewrite inE Gx //=. -rewrite (sameP eqP set1P) (subsetP Gp1) ?mem_gen //; apply: mem_imset. +rewrite (sameP eqP set1P) (subsetP Gp1) ?mem_gen //; apply: imset_f. by rewrite inE Gx; apply: pgroup_p (mem_p_elt pP Px). Qed. @@ -1277,7 +1277,7 @@ Lemma Mho_p_cycle p x : p.-elt x -> 'Mho^n(<[x]>) = <[x ^+ (p ^ n)]>. Proof. move=> p_x. apply/eqP; rewrite (MhoE p_x) eqEsubset cycle_subG mem_gen; last first. - by apply: mem_imset; apply: cycle_id. + by apply: imset_f; apply: cycle_id. rewrite gen_subG andbT; apply/subsetP=> _ /imsetP[_ /cycleP[k ->] ->]. by rewrite -expgM mulnC expgM mem_cycle. Qed. diff --git a/mathcomp/solvable/center.v b/mathcomp/solvable/center.v index 615e0ac..7b1aed7 100644 --- a/mathcomp/solvable/center.v +++ b/mathcomp/solvable/center.v @@ -200,7 +200,7 @@ Proof. move=> cHK; apply/setP=> z; rewrite {3}/center centM !inE. have cKH: H \subset 'C(K) by rewrite centsC. apply/imset2P/and3P=> [[x y /setIP[Hx cHx] /setIP[Ky cKy] ->{z}]| []]. - by rewrite mem_imset2 ?groupM // ?(subsetP cHK) ?(subsetP cKH). + by rewrite imset2_f ?groupM // ?(subsetP cHK) ?(subsetP cKH). case/imset2P=> x y Hx Ky ->{z}. rewrite groupMr => [cHx|]; last exact: subsetP Ky. rewrite groupMl => [cKy|]; last exact: subsetP Hx. diff --git a/mathcomp/solvable/commutator.v b/mathcomp/solvable/commutator.v index a1ffb65..904c4e9 100644 --- a/mathcomp/solvable/commutator.v +++ b/mathcomp/solvable/commutator.v @@ -181,7 +181,7 @@ Lemma commg_subr G H : ([~: G, H] \subset H) = (G \subset 'N(H)). Proof. rewrite gen_subG; apply/subsetP/subsetP=> [sRH x Gx | nGH xy]. rewrite inE; apply/subsetP=> _ /imsetP[y Ky ->]. - by rewrite conjg_Rmul groupMr // sRH // mem_imset2 ?groupV. + by rewrite conjg_Rmul groupMr // sRH // imset2_f ?groupV. case/imset2P=> x y Gx Hy ->{xy}. by rewrite commgEr groupMr // memJ_norm (groupV, nGH). Qed. @@ -254,7 +254,7 @@ Proof. have R_C := sameP trivgP commG1P. rewrite -subG1 R_C gen_subG -{}R_C gen_subG. apply: (iffP subsetP) => [cABC x y z Ax By Cz | cABC xyz]. - by apply/set1P; rewrite cABC // !mem_imset2. + by apply/set1P; rewrite cABC // !imset2_f. by case/imset2P=> _ z /imset2P[x y Ax By ->] Cz ->; rewrite cABC. Qed. diff --git a/mathcomp/solvable/cyclic.v b/mathcomp/solvable/cyclic.v index d82009b..334255e 100644 --- a/mathcomp/solvable/cyclic.v +++ b/mathcomp/solvable/cyclic.v @@ -131,7 +131,7 @@ Lemma cycleM a b : Proof. move=> cab co_ab; apply/eqP; rewrite eqEsubset -(cent_joinEl (cents_cycle cab)). rewrite join_subG {3}cab !cycleMsub // 1?coprime_sym //. -by rewrite -genM_join cycle_subG mem_gen // mem_imset2 ?cycle_id. +by rewrite -genM_join cycle_subG mem_gen // imset2_f ?cycle_id. Qed. Lemma cyclicM A B : @@ -716,7 +716,7 @@ apply/setP=> C; apply/idP/imsetP=> [| [gC GdC ->{C}]]. case/imsetP=> x /setIdP[_ oxd] ->; exists <[x]>%G => //. by rewrite -def_Gd inE -Zp_cycle subsetT. have:= GdC; rewrite -def_Gd => /setIdP[_ /eqP <-]. -by rewrite (set1P GdC) /= mem_imset // inE eqxx (mem_cycle x1). +by rewrite (set1P GdC) /= imset_f // inE eqxx (mem_cycle x1). Qed. Section FieldMulCyclic. @@ -742,7 +742,7 @@ elim/big_ind2: _ => // [m1 n1 m2 n2 | d _]; first exact: leq_add. set Gd := _ @: _; case: (set_0Vmem Gd) => [-> | [C]]; first by rewrite cards0. rewrite {}/Gd => /imsetP[x /setIdP[Gx /eqP <-] _ {C d}]. rewrite order_dvdG // (@eq_card1 _ <[x]>) ?mul1n // => C. -apply/idP/eqP=> [|-> {C}]; last by rewrite mem_imset // inE Gx eqxx. +apply/idP/eqP=> [|-> {C}]; last by rewrite imset_f // inE Gx eqxx. by case/imsetP=> y /setIdP[Gy /eqP/ucG->]. Qed. diff --git a/mathcomp/solvable/extremal.v b/mathcomp/solvable/extremal.v index 42882bc..8185773 100644 --- a/mathcomp/solvable/extremal.v +++ b/mathcomp/solvable/extremal.v @@ -792,7 +792,7 @@ have defK: K = [set w]. rewrite add0n -[j./2]odd_double_half addnC doubleD -!muln2 -mulnA. rewrite -(expg_mod_order v) ov modnMDl; case: (odd _); last first. right; rewrite mulg1 /r -(subnKC n_gt2) expnSr mulnA expgM. - by apply: mem_imset; rewrite inE. + by apply: imset_f; rewrite inE. rewrite (inj_eq (mulIg _)) -expg_mod_order ou -[k]odd_double_half. rewrite addnC -muln2 mulnDl -mulnA def2r modnMDl -ou expg_mod_order. case: (odd k); [left | right]; rewrite ?mul1n ?mul1g //. @@ -996,7 +996,7 @@ have defG': G^`(1) = <[x ^+ 2]>. by rewrite -def2q -def2r mulnA mulnK. have defG1: 'Mho^1(G) = <[x ^+ 2]>. apply/eqP; rewrite (MhoE _ pG) eqEsubset !gen_subG sub1set andbC. - rewrite mem_gen; last exact: mem_imset. + rewrite mem_gen; last exact: imset_f. apply/subsetP=> z2; case/imsetP=> z Gz ->{z2}. case Xz: (z \in X); last by rewrite -{1}(oX' z) ?expg_order ?group1 // inE Xz. by case/cycleP: Xz => i ->; rewrite expgAC mem_cycle. @@ -1195,7 +1195,7 @@ have defG': G^`(1) = <[x ^+ 2]>. by rewrite -def2q -def2r mulnA mulnK. have defG1: 'Mho^1(G) = <[x ^+ 2]>. apply/eqP; rewrite (MhoE _ pG) eqEsubset !gen_subG sub1set andbC. - rewrite mem_gen; last exact: mem_imset. + rewrite mem_gen; last exact: imset_f. apply/subsetP=> z2; case/imsetP=> z Gz ->{z2}. case Xz: (z \in X). by case/cycleP: Xz => i ->; rewrite -expgM mulnC expgM mem_cycle. @@ -1373,7 +1373,7 @@ have defG': G^`(1) = <[x ^+ 2]>. by rewrite -def2q -def2r mulnA mulnK. have defG1: 'Mho^1(G) = <[x ^+ 2]>. apply/eqP; rewrite (MhoE _ pG) eqEsubset !gen_subG sub1set andbC. - rewrite mem_gen; last exact: mem_imset. + rewrite mem_gen; last exact: imset_f. apply/subsetP=> z2; case/imsetP=> z Gz ->{z2}. case Xz: (z \in X). by case/cycleP: Xz => i ->; rewrite -expgM mulnC expgM mem_cycle. diff --git a/mathcomp/solvable/finmodule.v b/mathcomp/solvable/finmodule.v index 0fa02be..35c189a 100644 --- a/mathcomp/solvable/finmodule.v +++ b/mathcomp/solvable/finmodule.v @@ -462,8 +462,8 @@ apply: (addrI (\sum_(Hx in HG) fmalpha (repr Hx * (rX Hx)^-1))). rewrite {1}(reindex_acts 'Rs _ Gg) ?actsRs_rcosets // -!big_split /=. apply: eq_bigr => _ /rcosetsP[x Gx ->]; rewrite !rcosetE -!rcosetM. case: repr_rcosetP => h1 Hh1; case: repr_rcosetP => h2 Hh2. -have: H :* (x * g) \in rcosets H G by rewrite -rcosetE mem_imset ?groupM. -have: H :* x \in rcosets H G by rewrite -rcosetE mem_imset. +have: H :* (x * g) \in rcosets H G by rewrite -rcosetE imset_f ?groupM. +have: H :* x \in rcosets H G by rewrite -rcosetE imset_f. case/mem_rX/rcosetP=> h3 Hh3 -> /mem_rX/rcosetP[h4 Hh4 ->]. rewrite -!(mulgA h1) -!(mulgA h2) -!(mulgA h3) !(mulKVg, invMg). by rewrite addrC -!zmodMgE -!morphM ?groupM ?groupV // -!mulgA !mulKg. @@ -512,12 +512,12 @@ Let sXG : {subset X <= G}. Proof. exact/subsetP/(transversal_sub trX). Qed. Lemma rcosets_cycle_transversal : H_g_rcosets @: X = HGg. Proof. have sHXgHGg x: x \in X -> H_g_rcosets x \in HGg. - by move/sXG=> Gx; apply: mem_imset; rewrite -rcosetE mem_imset. + by move/sXG=> Gx; apply: imset_f; rewrite -rcosetE imset_f. apply/setP=> Hxg; apply/imsetP/idP=> [[x /sHXgHGg HGgHxg -> //] | HGgHxg]. have [_ /rcosetsP[z Gz ->] ->] := imsetP HGgHxg. pose Hzg := H :* z * <[g]>; pose x := transversal_repr 1 X Hzg. have HGgHzg: Hzg \in HG :* <[g]>. - by rewrite mem_mulg ?set11 // -rcosetE mem_imset. + by rewrite mem_mulg ?set11 // -rcosetE imset_f. have Hzg_x: x \in Hzg by rewrite (repr_mem_pblock trX). exists x; first by rewrite (repr_mem_transversal trX). case/mulsgP: Hzg_x => y u /rcoset_eqP <- /(orbit_act 'Rs) <- -> /=. @@ -567,7 +567,7 @@ have trY: is_transversal Y HG G. have eq_xx': x = x'. apply: (pblock_inj trX) => //; have /andP[/and3P[_ tiX _] _] := trX. have HGgHyg: H :* y * <[g]> \in HG :* <[g]>. - by rewrite mem_mulg ?set11 // -rcosetE mem_imset ?(subsetP sYG). + by rewrite mem_mulg ?set11 // -rcosetE imset_f ?(subsetP sYG). rewrite !(def_pblock tiX HGgHyg) //. by rewrite -[x'](mulgK (g ^+ j)) mem_mulg // groupV mem_cycle. by rewrite -[x](mulgK (g ^+ i)) mem_mulg ?rcoset_refl // groupV mem_cycle. @@ -578,7 +578,7 @@ have rYE x i : x \in X -> i < n_ x -> rY (H :* x :* g ^+ i) = x * g ^+ i. move=> Xx lt_i_x; rewrite -rcosetM; apply: (canLR_in (pblockK trY 1)). by apply/bigcupP; exists x => //; apply/imsetP; exists (Ordinal lt_i_x). apply/esym/def_pblock; last exact: rcoset_refl; first by case/and3P: partHG. - by rewrite -rcosetE mem_imset ?groupM ?groupX // sXG. + by rewrite -rcosetE imset_f ?groupM ?groupX // sXG. rewrite (transfer_indep trY Gg) /V -/rY (set_partition_big _ partHGg) /=. rewrite -defHgX big_imset /=; last first. apply/imset_injP; rewrite defHgX (card_transversal trX) defHGg. diff --git a/mathcomp/solvable/hall.v b/mathcomp/solvable/hall.v index 6234224..119a9fc 100644 --- a/mathcomp/solvable/hall.v +++ b/mathcomp/solvable/hall.v @@ -851,7 +851,7 @@ have trNPA: A :^: AG ::&: N = A :^: N. pose NG := 'N_G(P); have sNG_G : NG \subset G := subsetIl _ _. have nNGA: A \subset 'N(NG) by rewrite normsI ?norms_norm. apply/setP=> Ax; apply/setIdP/imsetP=> [[]|[x Nx ->{Ax}]]; last first. - by rewrite conj_subG //; case/setIP: Nx => AGx; rewrite mem_imset. + by rewrite conj_subG //; case/setIP: Nx => AGx; rewrite imset_f. have ->: N = A <*> NG by rewrite /N /AG !norm_joinEl // -group_modl. have coNG_A := coprimeSg sNG_G coGA; case/imsetP=> x AGx ->{Ax}. case/SchurZassenhaus_trans_actsol; rewrite ?cardJg // => y Ny /= ->. diff --git a/mathcomp/solvable/jordanholder.v b/mathcomp/solvable/jordanholder.v index 3d3162b..cd121cb 100644 --- a/mathcomp/solvable/jordanholder.v +++ b/mathcomp/solvable/jordanholder.v @@ -325,7 +325,7 @@ Lemma qacts_coset (H K : {group rT}) : Proof. move=> sHD aK. apply/subsetP=> x qdx; rewrite inE qdx inE; apply/subsetP=> y. -case/morphimP=> z Nz Kz /= e; rewrite e inE qactE // mem_imset // inE. +case/morphimP=> z Nz Kz /= e; rewrite e inE qactE // imset_f // inE. move/gactsP: aK; move/(_ x (subsetP (qact_dom_doms sHD) _ qdx) z); rewrite Kz. move->; move/acts_act: (acts_qact_dom to H); move/(_ x qdx z). by rewrite Nz andbT. diff --git a/mathcomp/solvable/maximal.v b/mathcomp/solvable/maximal.v index 95b7184..3786cff 100644 --- a/mathcomp/solvable/maximal.v +++ b/mathcomp/solvable/maximal.v @@ -301,7 +301,7 @@ apply/andP; split. apply/abelemP=> //; rewrite [abelian _]quotient_cents2 ?joing_subl //. split=> // _ /morphimP[x Nx Px ->] /=. rewrite -morphX //= coset_id // (MhoE 1 pP) joing_idr expn1. - by rewrite mem_gen //; apply/setUP; right; apply: mem_imset. + by rewrite mem_gen //; apply/setUP; right; apply: imset_f. rewrite -quotient_cents2 // [_ \subset 'C(_)]abP (MhoE 1 pP) gen_subG /=. apply/subsetP=> _ /imsetP[x Px ->]; rewrite expn1. have nPhi_x: x \in 'N('Phi(P)) by apply: (subsetP nPhiP). @@ -731,7 +731,7 @@ rewrite -{1}defG' gen_subG; apply/subsetP=> _ /imset2P[x y Gx Gy ->]. have Zxy: [~ x, y] \in 'Z(G) by rewrite -defG' mem_commg. have Zxp: x ^+ p \in 'Z(G). rewrite -defPhi (Phi_joing pG) (MhoE 1 pG) joing_idr mem_gen // !inE. - by rewrite expn1 orbC (mem_imset (expgn^~ p)). + by rewrite expn1 orbC (imset_f (expgn^~ p)). rewrite mem_morphpre /= ?defG' ?Zxy // inE -commXg; last first. by red; case/setIP: Zxy => _ /centP->. by apply/commgP; red; case/setIP: Zxp => _ /centP->. @@ -1157,7 +1157,7 @@ have defS: <<X>> = S. apply: Phi_nongen; apply/eqP; rewrite eqEsubset join_subG sPS sXS -joing_idr. rewrite -genM_join sub_gen // -quotientSK ?quotient_gen // -defSb genS //. apply/subsetP=> xb Xxb; apply/imsetP; rewrite (setIidPr nPX). - by exists (repr xb); rewrite /= ?coset_reprK //; apply: mem_imset. + by exists (repr xb); rewrite /= ?coset_reprK //; apply: imset_f. pose f (a : {perm gT}) := [ffun x => if x \in X then x^-1 * a x else 1]. have injf: {in A &, injective f}. move=> _ _ /morphimP[y nSy Ry ->] /morphimP[z nSz Rz ->]. @@ -1544,7 +1544,7 @@ have{genXp minU xp1 sVU ltVU} expVp: exponent V %| p. have{A pA defA1 sX'A V expVp} Zxy: [~ x, y] \in Z. rewrite -defA1 (OhmE 1 pA) mem_gen // !inE (exponentP expVp). by rewrite (subsetP sX'A) //= mem_commg ?(subsetP sUX). - by rewrite groupMl -1?[x^-1]conjg1 mem_gen // mem_imset2 // ?groupV cycle_id. + by rewrite groupMl -1?[x^-1]conjg1 mem_gen // imset2_f // ?groupV cycle_id. have{Zxy sUX cZX} cXYxy: [~ x, y] \in 'C(XY). by rewrite centsC in cZX; rewrite defXY (subsetP (centS sUX)) ?(subsetP cZX). rewrite -defU1 exponent_Ohm1_class2 // nil_class2 -defXY der1_joing_cycles //. diff --git a/mathcomp/solvable/primitive_action.v b/mathcomp/solvable/primitive_action.v index e6016e8..80005a4 100644 --- a/mathcomp/solvable/primitive_action.v +++ b/mathcomp/solvable/primitive_action.v @@ -80,7 +80,7 @@ apply/forallP/maximal_eqP=> /= [primG | [_ maxCx] Q]. case/imsetP=> _ /imsetP[b Hb ->] ->. by rewrite !(actsP (atrans_acts trG)) //; apply: subsetP Hb. case: (atransP2 trG Sx Sy) => a Ga ->. - by exists ((to^*)%act X a); apply: mem_imset; rewrite // orbit_refl. + by exists ((to^*)%act X a); apply: imset_f; rewrite // orbit_refl. apply/trivIsetP=> _ _ /imsetP[a Ga ->] /imsetP[b Gb ->]. apply: contraR => /exists_inP[_ /imsetP[_ /imsetP[a1 Ha1 ->] ->]]. case/imsetP=> _ /imsetP[b1 Hb1 ->] /(canLR (actK _ _)) /(canLR (actK _ _)). @@ -95,7 +95,7 @@ have QX: X \in Q by rewrite pblock_mem ?defS. have toX Y a: Y \in Q -> a \in G -> to x a \in Y -> sto X a = Y. move=> QY Ga Yxa; rewrite -(contraNeq (trivIsetP tIQ Y (sto X a) _ _)) //. by rewrite (actsP actQ). - by apply/existsP; exists (to x a); rewrite /= Yxa; apply: mem_imset. + by apply/existsP; exists (to x a); rewrite /= Yxa; apply: imset_f. have defQ: Q = orbit (to^*)%act G X. apply/eqP; rewrite eqEsubset andbC acts_sub_orbit // QX. apply/subsetP=> Y QY. @@ -245,7 +245,7 @@ apply/imsetP; exists t => //. apply/setP=> u; apply/idP/imsetP=> [du | [a Ga ->{u}]]. case: (ext_t u du) => y; rewrite tr_xt. by case/imsetP=> a Ga [_ def_u]; exists a => //; apply: val_inj. -have: n_act to xt a \in dtuple_on _ S by rewrite tr_xt mem_imset. +have: n_act to xt a \in dtuple_on _ S by rewrite tr_xt imset_f. by rewrite n_act_add dtuple_on_add; case/and3P. Qed. |
