diff options
| author | Georges Gonthier | 2015-12-01 13:47:13 +0000 |
|---|---|---|
| committer | Georges Gonthier | 2015-12-04 15:07:19 +0000 |
| commit | 058ec3b9957553cdc8a82dae6d50f48d559f4fe4 (patch) | |
| tree | 9fa597a0cbc7fa07fb6dab47a1f55ba1c5e5effe /mathcomp/solvable | |
| parent | 8318a8215baa3c79bfabbff160f9a925c6d8219a (diff) | |
Add elementary abelian finite modules lemmas to abelian
This factors proofs in mxabelem and finfield and removes
dependencies between these two files.
Diffstat (limited to 'mathcomp/solvable')
| -rw-r--r-- | mathcomp/solvable/abelian.v | 22 |
1 files changed, 20 insertions, 2 deletions
diff --git a/mathcomp/solvable/abelian.v b/mathcomp/solvable/abelian.v index 52f12aa..e608c4f 100644 --- a/mathcomp/solvable/abelian.v +++ b/mathcomp/solvable/abelian.v @@ -6,9 +6,9 @@ Require Import ssrbool ssrfun eqtype ssrnat seq path div fintype. From mathcomp Require Import finfun bigop finset prime binomial fingroup morphism perm. From mathcomp -Require Import automorphism action quotient gfunctor gproduct zmodp cyclic. +Require Import automorphism action quotient gfunctor gproduct ssralg finalg. From mathcomp -Require Import pgroup gseries nilpotent sylow. +Require Import zmodp cyclic pgroup gseries nilpotent sylow. (******************************************************************************) (* Constructions based on abelian groups and their structure, with some *) @@ -2162,6 +2162,24 @@ Proof. exact: morphim_p_rank_abelian. Qed. End QuotientRank. +Section FimModAbelem. +Import GRing.Theory FinRing.Theory. +Lemma fin_lmod_char_abelem p (R : ringType) (V : finLmodType R): + p \in [char R]%R -> p.-abelem [set: V]. +Proof. +case/andP=> p_pr /eqP-pR0; apply/abelemP=> //. +by split=> [|v _]; rewrite ?zmod_abelian // zmodXgE -scaler_nat pR0 scale0r. +Qed. + +Lemma fin_Fp_lmod_abelem p (V : finLmodType 'F_p) : + prime p -> p.-abelem [set: V]. +Proof. by move/char_Fp/fin_lmod_char_abelem->. Qed. + +Lemma fin_ring_char_abelem p (R : finRingType) : + p \in [char R]%R -> p.-abelem [set: R]. +Proof. exact: fin_lmod_char_abelem [finLmodType R of R^o]. Qed. + +End FimModAbelem. |
