diff options
| author | Cyril Cohen | 2017-11-23 16:33:36 +0100 |
|---|---|---|
| committer | Cyril Cohen | 2018-02-06 13:54:37 +0100 |
| commit | fafd4dac5315e1d4e071b0044a50a16360b31964 (patch) | |
| tree | 5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/solvable/sylow.v | |
| parent | 835467324db450c8fb8971e477cc4d82fa3e861b (diff) | |
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/solvable/sylow.v')
| -rw-r--r-- | mathcomp/solvable/sylow.v | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/mathcomp/solvable/sylow.v b/mathcomp/solvable/sylow.v index 32f86f1..8925b7d 100644 --- a/mathcomp/solvable/sylow.v +++ b/mathcomp/solvable/sylow.v @@ -130,7 +130,7 @@ have trS: [transitive G, on S | 'JG]. apply/imsetP; exists P => //; apply/eqP. rewrite eqEsubset andbC acts_sub_orbit // S_P; apply/subsetP=> Q S_Q. have:= S_P; rewrite inE => /maxgroupP[/andP[_ pP]]. - have [-> max1 | ntP _] := eqVneq P 1%G. + have [-> max1 | ntP _] := eqVneq P 1%G. move/andP/max1: (S_pG _ S_Q) => Q1. by rewrite (group_inj (Q1 (sub1G Q))) orbit_refl. have:= oG_mod _ _ S_P S_P; rewrite (oG_mod _ Q) // orbit_refl. @@ -346,7 +346,7 @@ have nsHG: H :&: G <| G by rewrite /normal subsetIr normsI ?normG. rewrite -!(setIC H) defG -(partnC pi (cardG_gt0 _)). rewrite -(card_Hall (Hall_setI_normal nsHG hallR)) /= setICA. rewrite -(card_Hall (Hall_setI_normal nsHG hallK)) /= setICA. -by rewrite -defG (setIidPl (mulG_subl _ _)) (setIidPl (mulG_subr _ _)). +by rewrite -defG (setIidPl (mulG_subl _ _)) (setIidPl (mulG_subr _ _)). Qed. End SomeHall. @@ -550,7 +550,7 @@ Lemma normal_pgroup r P N : Proof. elim: r gT P N => [|r IHr] gTr P N pP nNP le_r. by exists (1%G : {group gTr}); rewrite sub1G normal1 cards1. -have [NZ_1 | ntNZ] := eqVneq (N :&: 'Z(P)) 1. +have [NZ_1 | ntNZ] := eqVneq (N :&: 'Z(P)) 1. by rewrite (TI_center_nil (pgroup_nil pP)) // cards1 logn1 in le_r. have: p.-group (N :&: 'Z(P)) by apply: pgroupS pP; rewrite /= setICA subsetIl. case/pgroup_pdiv=> // p_pr /Cauchy[// | z]. @@ -622,7 +622,7 @@ have{n leGn IHn nDG} pN: p.-group <<'N_E(D)>>. by rewrite subsetI nDG andbF. - by rewrite inE Nx1 (subsetP sEG) ?mem_gen. have Ex1y: x1 ^ y \in E. - by rewrite -mem_conjgV (normsP nEG) // groupV; case/setIP: Ny. + by rewrite -mem_conjgV (normsP nEG) // groupV; case/setIP: Ny. apply: pgroupS (genS _) (pE _ _ Ex1 Ex1y). by apply/subsetP=> u; rewrite !inE. have [y1 Ny1 Py1]: exists2 y1, y1 \in 'N_E(D) & y1 \notin P. |
