diff options
| author | Enrico Tassi | 2015-03-09 11:07:53 +0100 |
|---|---|---|
| committer | Enrico Tassi | 2015-03-09 11:24:38 +0100 |
| commit | fc84c27eac260dffd8f2fb1cb56d599f1e3486d9 (patch) | |
| tree | c16205f1637c80833a4c4598993c29fa0fd8c373 /mathcomp/solvable/pgroup.v | |
Initial commit
Diffstat (limited to 'mathcomp/solvable/pgroup.v')
| -rw-r--r-- | mathcomp/solvable/pgroup.v | 1355 |
1 files changed, 1355 insertions, 0 deletions
diff --git a/mathcomp/solvable/pgroup.v b/mathcomp/solvable/pgroup.v new file mode 100644 index 0000000..c6db976 --- /dev/null +++ b/mathcomp/solvable/pgroup.v @@ -0,0 +1,1355 @@ +(* (c) Copyright Microsoft Corporation and Inria. All rights reserved. *) +Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div. +Require Import fintype bigop finset prime fingroup morphism. +Require Import gfunctor automorphism quotient action gproduct cyclic. + +(******************************************************************************) +(* Standard group notions and constructions based on the prime decomposition *) +(* of the order of the group or its elements: *) +(* pi.-group G <=> G is a pi-group, i.e., pi.-nat #|G|. *) +(* -> Recall that here and in the sequel pi can be a single prime p. *) +(* pi.-subgroup(H) G <=> H is a pi-subgroup of G. *) +(* := (H \subset G) && pi.-group H. *) +(* -> This is provided mostly as a shorhand, with few associated lemmas. *) +(* However, we do establish some results on maximal pi-subgroups. *) +(* pi.-elt x <=> x is a pi-element. *) +(* := pi.-nat #[x] or pi.-group <[x]>. *) +(* x.`_pi == the pi-constituent of x: the (unique) pi-element *) +(* y \in <[x]> such that x * y^-1 is a pi'-element. *) +(* pi.-Hall(G) H <=> H is a Hall pi-subgroup of G. *) +(* := [&& H \subset G, pi.-group H & pi^'.-nat #|G : H|]. *) +(* -> This is also eqivalent to H \subset G /\ #|H| = #|G|`_pi. *) +(* p.-Sylow(G) P <=> P is a Sylow p-subgroup of G. *) +(* -> This is the display and preferred input notation for p.-Hall(G) P. *) +(* 'Syl_p(G) == the set of the p-Sylow subgroups of G. *) +(* := [set P : {group _} | p.-Sylow(G) P]. *) +(* p_group P <=> P is a p-group for some prime p. *) +(* Hall G H <=> H is a Hall pi-subgroup of G for some pi. *) +(* := coprime #|H| #|G : H| && (H \subset G). *) +(* Sylow G P <=> P is a Sylow p-subgroup of G for some p. *) +(* := p_group P && Hall G P. *) +(* 'O_pi(G) == the pi-core (largest normal pi-subgroup) of G. *) +(* pcore_mod pi G H == the pi-core of G mod H. *) +(* := G :&: (coset H @*^-1 'O_pi(G / H)). *) +(* 'O_{pi2, pi1}(G) == the pi1,pi2-core of G. *) +(* := the pi1-core of G mod 'O_pi2(G). *) +(* -> We have 'O_{pi2, pi1}(G) / 'O_pi2(G) = 'O_pi1(G / 'O_pi2(G)) *) +(* with 'O_pi2(G) <| 'O_{pi2, pi1}(G) <| G. *) +(* 'O_{pn, ..., p1}(G) == the p1, ..., pn-core of G. *) +(* := the p1-core of G mod 'O_{pn, ..., p2}(G). *) +(* Note that notions are always defined on sets even though their name *) +(* indicates "group" properties; the actual definition of the notion never *) +(* tests for the group property, since this property will always be provided *) +(* by a (canonical) group structure. Similarly, p-group properties assume *) +(* without test that p is a prime. *) +(******************************************************************************) + +Set Implicit Arguments. +Unset Strict Implicit. +Unset Printing Implicit Defensive. + +Import GroupScope. + +Section PgroupDefs. + +(* We defer the definition of the functors ('0_p(G), etc) because they need *) +(* to quantify over the finGroupType explicitly. *) + +Variable gT : finGroupType. +Implicit Type (x : gT) (A B : {set gT}) (pi : nat_pred) (p n : nat). + +Definition pgroup pi A := pi.-nat #|A|. + +Definition psubgroup pi A B := (B \subset A) && pgroup pi B. + +Definition p_group A := pgroup (pdiv #|A|) A. + +Definition p_elt pi x := pi.-nat #[x]. + +Definition constt x pi := x ^+ (chinese #[x]`_pi #[x]`_pi^' 1 0). + +Definition Hall A B := (B \subset A) && coprime #|B| #|A : B|. + +Definition pHall pi A B := [&& B \subset A, pgroup pi B & pi^'.-nat #|A : B|]. + +Definition Syl p A := [set P : {group gT} | pHall p A P]. + +Definition Sylow A B := p_group B && Hall A B. + +End PgroupDefs. + +Arguments Scope pgroup [_ nat_scope group_scope]. +Arguments Scope psubgroup [_ nat_scope group_scope group_scope]. +Arguments Scope p_group [_ group_scope]. +Arguments Scope p_elt [_ nat_scope]. +Arguments Scope constt [_ group_scope nat_scope]. +Arguments Scope Hall [_ group_scope group_scope]. +Arguments Scope pHall [_ nat_scope group_scope group_scope]. +Arguments Scope Syl [_ nat_scope group_scope]. +Arguments Scope Sylow [_ group_scope group_scope]. +Prenex Implicits p_group Hall Sylow. + +Notation "pi .-group" := (pgroup pi) + (at level 2, format "pi .-group") : group_scope. + +Notation "pi .-subgroup ( A )" := (psubgroup pi A) + (at level 8, format "pi .-subgroup ( A )") : group_scope. + +Notation "pi .-elt" := (p_elt pi) + (at level 2, format "pi .-elt") : group_scope. + +Notation "x .`_ pi" := (constt x pi) + (at level 3, format "x .`_ pi") : group_scope. + +Notation "pi .-Hall ( G )" := (pHall pi G) + (at level 8, format "pi .-Hall ( G )") : group_scope. + +Notation "p .-Sylow ( G )" := (nat_pred_of_nat p).-Hall(G) + (at level 8, format "p .-Sylow ( G )") : group_scope. + +Notation "''Syl_' p ( G )" := (Syl p G) + (at level 8, p at level 2, format "''Syl_' p ( G )") : group_scope. + +Section PgroupProps. + +Variable gT : finGroupType. +Implicit Types (pi rho : nat_pred) (p : nat). +Implicit Types (x y z : gT) (A B C D : {set gT}) (G H K P Q R : {group gT}). + +Lemma trivgVpdiv G : G :=: 1 \/ (exists2 p, prime p & p %| #|G|). +Proof. +have [leG1|lt1G] := leqP #|G| 1; first by left; exact: card_le1_trivg. +by right; exists (pdiv #|G|); rewrite ?pdiv_dvd ?pdiv_prime. +Qed. + +Lemma prime_subgroupVti G H : prime #|G| -> G \subset H \/ H :&: G = 1. +Proof. +move=> prG; have [|[p p_pr pG]] := trivgVpdiv (H :&: G); first by right. +left; rewrite (sameP setIidPr eqP) eqEcard subsetIr. +suffices <-: p = #|G| by rewrite dvdn_leq ?cardG_gt0. +by apply/eqP; rewrite -dvdn_prime2 // -(LagrangeI G H) setIC dvdn_mulr. +Qed. + +Lemma pgroupE pi A : pi.-group A = pi.-nat #|A|. Proof. by []. Qed. + +Lemma sub_pgroup pi rho A : {subset pi <= rho} -> pi.-group A -> rho.-group A. +Proof. by move=> pi_sub_rho; exact: sub_in_pnat (in1W pi_sub_rho). Qed. + +Lemma eq_pgroup pi rho A : pi =i rho -> pi.-group A = rho.-group A. +Proof. exact: eq_pnat. Qed. + +Lemma eq_p'group pi rho A : pi =i rho -> pi^'.-group A = rho^'.-group A. +Proof. by move/eq_negn; exact: eq_pnat. Qed. + +Lemma pgroupNK pi A : pi^'^'.-group A = pi.-group A. +Proof. exact: pnatNK. Qed. + +Lemma pi_pgroup p pi A : p.-group A -> p \in pi -> pi.-group A. +Proof. exact: pi_pnat. Qed. + +Lemma pi_p'group p pi A : pi.-group A -> p \in pi^' -> p^'.-group A. +Proof. exact: pi_p'nat. Qed. + +Lemma pi'_p'group p pi A : pi^'.-group A -> p \in pi -> p^'.-group A. +Proof. exact: pi'_p'nat. Qed. + +Lemma p'groupEpi p G : p^'.-group G = (p \notin \pi(G)). +Proof. exact: p'natEpi (cardG_gt0 G). Qed. + +Lemma pgroup_pi G : \pi(G).-group G. +Proof. by rewrite /=; exact: pnat_pi. Qed. + +Lemma partG_eq1 pi G : (#|G|`_pi == 1%N) = pi^'.-group G. +Proof. exact: partn_eq1 (cardG_gt0 G). Qed. + +Lemma pgroupP pi G : + reflect (forall p, prime p -> p %| #|G| -> p \in pi) (pi.-group G). +Proof. exact: pnatP. Qed. +Implicit Arguments pgroupP [pi G]. + +Lemma pgroup1 pi : pi.-group [1 gT]. +Proof. by rewrite /pgroup cards1. Qed. + +Lemma pgroupS pi G H : H \subset G -> pi.-group G -> pi.-group H. +Proof. by move=> sHG; exact: pnat_dvd (cardSg sHG). Qed. + +Lemma oddSg G H : H \subset G -> odd #|G| -> odd #|H|. +Proof. by rewrite !odd_2'nat; exact: pgroupS. Qed. + +Lemma odd_pgroup_odd p G : odd p -> p.-group G -> odd #|G|. +Proof. +move=> p_odd pG; rewrite odd_2'nat (pi_pnat pG) // !inE. +by case: eqP p_odd => // ->. +Qed. + +Lemma card_pgroup p G : p.-group G -> #|G| = (p ^ logn p #|G|)%N. +Proof. by move=> pG; rewrite -p_part part_pnat_id. Qed. + +Lemma properG_ltn_log p G H : + p.-group G -> H \proper G -> logn p #|H| < logn p #|G|. +Proof. +move=> pG; rewrite properEneq eqEcard andbC ltnNge => /andP[sHG]. +rewrite sHG /= {1}(card_pgroup pG) {1}(card_pgroup (pgroupS sHG pG)). +by apply: contra; case: p {pG} => [|p] leHG; rewrite ?logn0 // leq_pexp2l. +Qed. + +Lemma pgroupM pi G H : pi.-group (G * H) = pi.-group G && pi.-group H. +Proof. +have GH_gt0: 0 < #|G :&: H| := cardG_gt0 _. +rewrite /pgroup -(mulnK #|_| GH_gt0) -mul_cardG -(LagrangeI G H) -mulnA. +by rewrite mulKn // -(LagrangeI H G) setIC !pnat_mul andbCA; case: (pnat _). +Qed. + +Lemma pgroupJ pi G x : pi.-group (G :^ x) = pi.-group G. +Proof. by rewrite /pgroup cardJg. Qed. + +Lemma pgroup_p p P : p.-group P -> p_group P. +Proof. +case: (leqP #|P| 1); first by move=> /card_le1_trivg-> _; exact: pgroup1. +move/pdiv_prime=> pr_q pgP; have:= pgroupP pgP _ pr_q (pdiv_dvd _). +by rewrite /p_group => /eqnP->. +Qed. + +Lemma p_groupP P : p_group P -> exists2 p, prime p & p.-group P. +Proof. +case: (ltnP 1 #|P|); first by move/pdiv_prime; exists (pdiv #|P|). +move/card_le1_trivg=> -> _; exists 2 => //; exact: pgroup1. +Qed. + +Lemma pgroup_pdiv p G : + p.-group G -> G :!=: 1 -> + [/\ prime p, p %| #|G| & exists m, #|G| = p ^ m.+1]%N. +Proof. +move=> pG; rewrite trivg_card1; case/p_groupP: (pgroup_p pG) => q q_pr qG. +move/implyP: (pgroupP pG q q_pr); case/p_natP: qG => // [[|m] ->] //. +by rewrite dvdn_exp // => /eqnP <- _; split; rewrite ?dvdn_exp //; exists m. +Qed. + +Lemma coprime_p'group p K R : + coprime #|K| #|R| -> p.-group R -> R :!=: 1 -> p^'.-group K. +Proof. +move=> coKR pR ntR; have [p_pr _ [e oK]] := pgroup_pdiv pR ntR. +by rewrite oK coprime_sym coprime_pexpl // prime_coprime // -p'natE in coKR. +Qed. + +Lemma card_Hall pi G H : pi.-Hall(G) H -> #|H| = #|G|`_pi. +Proof. +case/and3P=> sHG piH pi'H; rewrite -(Lagrange sHG). +by rewrite partnM ?Lagrange // part_pnat_id ?part_p'nat ?muln1. +Qed. + +Lemma pHall_sub pi A B : pi.-Hall(A) B -> B \subset A. +Proof. by case/andP. Qed. + +Lemma pHall_pgroup pi A B : pi.-Hall(A) B -> pi.-group B. +Proof. by case/and3P. Qed. + +Lemma pHallP pi G H : reflect (H \subset G /\ #|H| = #|G|`_pi) (pi.-Hall(G) H). +Proof. +apply: (iffP idP) => [piH | [sHG oH]]. + split; [exact: pHall_sub piH | exact: card_Hall]. +rewrite /pHall sHG -divgS // /pgroup oH. +by rewrite -{2}(@partnC pi #|G|) ?mulKn ?part_pnat. +Qed. + +Lemma pHallE pi G H : pi.-Hall(G) H = (H \subset G) && (#|H| == #|G|`_pi). +Proof. by apply/pHallP/andP=> [] [->] /eqP. Qed. + +Lemma coprime_mulpG_Hall pi G K R : + K * R = G -> pi.-group K -> pi^'.-group R -> + pi.-Hall(G) K /\ pi^'.-Hall(G) R. +Proof. +move=> defG piK pi'R; apply/andP. +rewrite /pHall piK -!divgS /= -defG ?mulG_subl ?mulg_subr //= pnatNK. +by rewrite coprime_cardMg ?(pnat_coprime piK) // mulKn ?mulnK //; exact/and3P. +Qed. + +Lemma coprime_mulGp_Hall pi G K R : + K * R = G -> pi^'.-group K -> pi.-group R -> + pi^'.-Hall(G) K /\ pi.-Hall(G) R. +Proof. +move=> defG pi'K piR; apply/andP; rewrite andbC; apply/andP. +by apply: coprime_mulpG_Hall => //; rewrite -(comm_group_setP _) defG ?groupP. +Qed. + +Lemma eq_in_pHall pi rho G H : + {in \pi(G), pi =i rho} -> pi.-Hall(G) H = rho.-Hall(G) H. +Proof. +move=> eq_pi_rho; apply: andb_id2l => sHG. +congr (_ && _); apply: eq_in_pnat => p piHp. + by apply: eq_pi_rho; exact: (piSg sHG). +by congr (~~ _); apply: eq_pi_rho; apply: (pi_of_dvd (dvdn_indexg G H)). +Qed. + +Lemma eq_pHall pi rho G H : pi =i rho -> pi.-Hall(G) H = rho.-Hall(G) H. +Proof. by move=> eq_pi_rho; exact: eq_in_pHall (in1W eq_pi_rho). Qed. + +Lemma eq_p'Hall pi rho G H : pi =i rho -> pi^'.-Hall(G) H = rho^'.-Hall(G) H. +Proof. by move=> eq_pi_rho; exact: eq_pHall (eq_negn _). Qed. + +Lemma pHallNK pi G H : pi^'^'.-Hall(G) H = pi.-Hall(G) H. +Proof. exact: eq_pHall (negnK _). Qed. + +Lemma subHall_Hall pi rho G H K : + rho.-Hall(G) H -> {subset pi <= rho} -> pi.-Hall(H) K -> pi.-Hall(G) K. +Proof. +move=> hallH pi_sub_rho hallK. +rewrite pHallE (subset_trans (pHall_sub hallK) (pHall_sub hallH)) /=. +by rewrite (card_Hall hallK) (card_Hall hallH) partn_part. +Qed. + +Lemma subHall_Sylow pi p G H P : + pi.-Hall(G) H -> p \in pi -> p.-Sylow(H) P -> p.-Sylow(G) P. +Proof. +move=> hallH pi_p sylP; have [sHG piH _] := and3P hallH. +rewrite pHallE (subset_trans (pHall_sub sylP) sHG) /=. +by rewrite (card_Hall sylP) (card_Hall hallH) partn_part // => q; move/eqnP->. +Qed. + +Lemma pHall_Hall pi A B : pi.-Hall(A) B -> Hall A B. +Proof. by case/and3P=> sBA piB pi'B; rewrite /Hall sBA (pnat_coprime piB). Qed. + +Lemma Hall_pi G H : Hall G H -> \pi(H).-Hall(G) H. +Proof. +by case/andP=> sHG coHG /=; rewrite /pHall sHG /pgroup pnat_pi -?coprime_pi'. +Qed. + +Lemma HallP G H : Hall G H -> exists pi, pi.-Hall(G) H. +Proof. by exists \pi(H); exact: Hall_pi. Qed. + +Lemma sdprod_Hall G K H : K ><| H = G -> Hall G K = Hall G H. +Proof. +case/sdprod_context=> /andP[sKG _] sHG defG _ tiKH. +by rewrite /Hall sKG sHG -!divgS // -defG TI_cardMg // coprime_sym mulKn ?mulnK. +Qed. + +Lemma coprime_sdprod_Hall_l G K H : K ><| H = G -> coprime #|K| #|H| = Hall G K. +Proof. +case/sdprod_context=> /andP[sKG _] _ defG _ tiKH. +by rewrite /Hall sKG -divgS // -defG TI_cardMg ?mulKn. +Qed. + +Lemma coprime_sdprod_Hall_r G K H : K ><| H = G -> coprime #|K| #|H| = Hall G H. +Proof. +by move=> defG; rewrite (coprime_sdprod_Hall_l defG) (sdprod_Hall defG). +Qed. + +Lemma compl_pHall pi K H G : + pi.-Hall(G) K -> (H \in [complements to K in G]) = pi^'.-Hall(G) H. +Proof. +move=> hallK; apply/complP/idP=> [[tiKH mulKH] | hallH]. + have [_] := andP hallK; rewrite /pHall pnatNK -{3}(invGid G) -mulKH mulG_subr. + by rewrite invMG !indexMg -indexgI andbC -indexgI setIC tiKH !indexg1. +have [[sKG piK _] [sHG pi'H _]] := (and3P hallK, and3P hallH). +have tiKH: K :&: H = 1 := coprime_TIg (pnat_coprime piK pi'H). +split=> //; apply/eqP; rewrite eqEcard mul_subG //= TI_cardMg //. +by rewrite (card_Hall hallK) (card_Hall hallH) partnC. +Qed. + +Lemma compl_p'Hall pi K H G : + pi^'.-Hall(G) K -> (H \in [complements to K in G]) = pi.-Hall(G) H. +Proof. by move/compl_pHall->; exact: eq_pHall (negnK pi). Qed. + +Lemma sdprod_normal_p'HallP pi K H G : + K <| G -> pi^'.-Hall(G) H -> reflect (K ><| H = G) (pi.-Hall(G) K). +Proof. +move=> nsKG hallH; rewrite -(compl_p'Hall K hallH). +exact: sdprod_normal_complP. +Qed. + +Lemma sdprod_normal_pHallP pi K H G : + K <| G -> pi.-Hall(G) H -> reflect (K ><| H = G) (pi^'.-Hall(G) K). +Proof. +by move=> nsKG hallH; apply: sdprod_normal_p'HallP; rewrite ?pHallNK. +Qed. + +Lemma pHallJ2 pi G H x : pi.-Hall(G :^ x) (H :^ x) = pi.-Hall(G) H. +Proof. by rewrite !pHallE conjSg !cardJg. Qed. + +Lemma pHallJnorm pi G H x : x \in 'N(G) -> pi.-Hall(G) (H :^ x) = pi.-Hall(G) H. +Proof. by move=> Nx; rewrite -{1}(normP Nx) pHallJ2. Qed. + +Lemma pHallJ pi G H x : x \in G -> pi.-Hall(G) (H :^ x) = pi.-Hall(G) H. +Proof. by move=> Gx; rewrite -{1}(conjGid Gx) pHallJ2. Qed. + +Lemma HallJ G H x : x \in G -> Hall G (H :^ x) = Hall G H. +Proof. +by move=> Gx; rewrite /Hall -!divgI -{1 3}(conjGid Gx) conjSg -conjIg !cardJg. +Qed. + +Lemma psubgroupJ pi G H x : + x \in G -> pi.-subgroup(G) (H :^ x) = pi.-subgroup(G) H. +Proof. by move=> Gx; rewrite /psubgroup pgroupJ -{1}(conjGid Gx) conjSg. Qed. + +Lemma p_groupJ P x : p_group (P :^ x) = p_group P. +Proof. by rewrite /p_group cardJg pgroupJ. Qed. + +Lemma SylowJ G P x : x \in G -> Sylow G (P :^ x) = Sylow G P. +Proof. by move=> Gx; rewrite /Sylow p_groupJ HallJ. Qed. + +Lemma p_Sylow p G P : p.-Sylow(G) P -> Sylow G P. +Proof. +by move=> pP; rewrite /Sylow (pgroup_p (pHall_pgroup pP)) (pHall_Hall pP). +Qed. + +Lemma pHall_subl pi G K H : + H \subset K -> K \subset G -> pi.-Hall(G) H -> pi.-Hall(K) H. +Proof. +move=> sHK sKG; rewrite /pHall sHK; case/and3P=> _ ->. +by apply: pnat_dvd; exact: indexSg. +Qed. + +Lemma Hall1 G : Hall G 1. +Proof. by rewrite /Hall sub1G cards1 coprime1n. Qed. + +Lemma p_group1 : @p_group gT 1. +Proof. by rewrite (@pgroup_p 2) ?pgroup1. Qed. + +Lemma Sylow1 G : Sylow G 1. +Proof. by rewrite /Sylow p_group1 Hall1. Qed. + +Lemma SylowP G P : reflect (exists2 p, prime p & p.-Sylow(G) P) (Sylow G P). +Proof. +apply: (iffP idP) => [| [p _]]; last exact: p_Sylow. +case/andP=> /p_groupP[p p_pr] /p_natP[[P1 _ | n oP /Hall_pi]]; last first. + by rewrite /= oP pi_of_exp // (eq_pHall _ _ (pi_of_prime _)) //; exists p. +have{p p_pr P1} ->: P :=: 1 by apply: card1_trivg; rewrite P1. +pose p := pdiv #|G|.+1; have p_pr: prime p by rewrite pdiv_prime ?ltnS. +exists p; rewrite // pHallE sub1G cards1 part_p'nat //. +apply/pgroupP=> q pr_q qG; apply/eqnP=> def_q. +have: p %| #|G| + 1 by rewrite addn1 pdiv_dvd. +by rewrite dvdn_addr -def_q // Euclid_dvd1. +Qed. + +Lemma p_elt_exp pi x m : pi.-elt (x ^+ m) = (#[x]`_pi^' %| m). +Proof. +apply/idP/idP=> [pi_xm | /dvdnP[q ->{m}]]; last first. + rewrite mulnC; apply: pnat_dvd (part_pnat pi #[x]). + by rewrite order_dvdn -expgM mulnC mulnA partnC // -order_dvdn dvdn_mulr. +rewrite -(@Gauss_dvdr _ #[x ^+ m]); last first. + by rewrite coprime_sym (pnat_coprime pi_xm) ?part_pnat. +apply: (@dvdn_trans #[x]); first by rewrite -{2}[#[x]](partnC pi) ?dvdn_mull. +by rewrite order_dvdn mulnC expgM expg_order. +Qed. + +Lemma mem_p_elt pi x G : pi.-group G -> x \in G -> pi.-elt x. +Proof. by move=> piG Gx; apply: pgroupS piG; rewrite cycle_subG. Qed. + +Lemma p_eltM_norm pi x y : + x \in 'N(<[y]>) -> pi.-elt x -> pi.-elt y -> pi.-elt (x * y). +Proof. +move=> nyx pi_x pi_y; apply: (@mem_p_elt pi _ (<[x]> <*> <[y]>)%G). + by rewrite /= norm_joinEl ?cycle_subG // pgroupM; exact/andP. +by rewrite groupM // mem_gen // inE cycle_id ?orbT. +Qed. + +Lemma p_eltM pi x y : commute x y -> pi.-elt x -> pi.-elt y -> pi.-elt (x * y). +Proof. +move=> cxy; apply: p_eltM_norm; apply: (subsetP (cent_sub _)). +by rewrite cent_gen cent_set1; exact/cent1P. +Qed. + +Lemma p_elt1 pi : pi.-elt (1 : gT). +Proof. by rewrite /p_elt order1. Qed. + +Lemma p_eltV pi x : pi.-elt x^-1 = pi.-elt x. +Proof. by rewrite /p_elt orderV. Qed. + +Lemma p_eltX pi x n : pi.-elt x -> pi.-elt (x ^+ n). +Proof. by rewrite -{1}[x]expg1 !p_elt_exp dvdn1 => /eqnP->. Qed. + +Lemma p_eltJ pi x y : pi.-elt (x ^ y) = pi.-elt x. +Proof. by congr pnat; rewrite orderJ. Qed. + +Lemma sub_p_elt pi1 pi2 x : {subset pi1 <= pi2} -> pi1.-elt x -> pi2.-elt x. +Proof. by move=> pi12; apply: sub_in_pnat => q _; exact: pi12. Qed. + +Lemma eq_p_elt pi1 pi2 x : pi1 =i pi2 -> pi1.-elt x = pi2.-elt x. +Proof. by move=> pi12; exact: eq_pnat. Qed. + +Lemma p_eltNK pi x : pi^'^'.-elt x = pi.-elt x. +Proof. exact: pnatNK. Qed. + +Lemma eq_constt pi1 pi2 x : pi1 =i pi2 -> x.`_pi1 = x.`_pi2. +Proof. +move=> pi12; congr (x ^+ (chinese _ _ 1 0)); apply: eq_partn => // a. +by congr (~~ _); exact: pi12. +Qed. + +Lemma consttNK pi x : x.`_pi^'^' = x.`_pi. +Proof. by rewrite /constt !partnNK. Qed. + +Lemma cycle_constt pi x : x.`_pi \in <[x]>. +Proof. exact: mem_cycle. Qed. + +Lemma consttV pi x : (x^-1).`_pi = (x.`_pi)^-1. +Proof. by rewrite /constt expgVn orderV. Qed. + +Lemma constt1 pi : 1.`_pi = 1 :> gT. +Proof. exact: expg1n. Qed. + +Lemma consttJ pi x y : (x ^ y).`_pi = x.`_pi ^ y. +Proof. by rewrite /constt orderJ conjXg. Qed. + +Lemma p_elt_constt pi x : pi.-elt x.`_pi. +Proof. by rewrite p_elt_exp /chinese addn0 mul1n dvdn_mulr. Qed. + +Lemma consttC pi x : x.`_pi * x.`_pi^' = x. +Proof. +apply/eqP; rewrite -{3}[x]expg1 -expgD eq_expg_mod_order. +rewrite partnNK -{5 6}(@partnC pi #[x]) // /chinese !addn0. +by rewrite chinese_remainder ?chinese_modl ?chinese_modr ?coprime_partC ?eqxx. +Qed. + +Lemma p'_elt_constt pi x : pi^'.-elt (x * (x.`_pi)^-1). +Proof. by rewrite -{1}(consttC pi^' x) consttNK mulgK p_elt_constt. Qed. + +Lemma order_constt pi (x : gT) : #[x.`_pi] = #[x]`_pi. +Proof. +rewrite -{2}(consttC pi x) orderM; [|exact: commuteX2|]; last first. + by apply: (@pnat_coprime pi); exact: p_elt_constt. +by rewrite partnM // part_pnat_id ?part_p'nat ?muln1 //; exact: p_elt_constt. +Qed. + +Lemma consttM pi x y : commute x y -> (x * y).`_pi = x.`_pi * y.`_pi. +Proof. +move=> cxy; pose m := #|<<[set x; y]>>|; have m_gt0: 0 < m := cardG_gt0 _. +pose k := chinese m`_pi m`_pi^' 1 0. +suffices kXpi z: z \in <<[set x; y]>> -> z.`_pi = z ^+ k. + by rewrite !kXpi ?expgMn // ?groupM ?mem_gen // !inE eqxx ?orbT. +move=> xyz; have{xyz} zm: #[z] %| m by rewrite cardSg ?cycle_subG. +apply/eqP; rewrite eq_expg_mod_order -{3 4}[#[z]](partnC pi) //. +rewrite chinese_remainder ?chinese_modl ?chinese_modr ?coprime_partC //. +rewrite -!(modn_dvdm k (partn_dvd _ m_gt0 zm)). +rewrite chinese_modl ?chinese_modr ?coprime_partC //. +by rewrite !modn_dvdm ?partn_dvd ?eqxx. +Qed. + +Lemma consttX pi x n : (x ^+ n).`_pi = x.`_pi ^+ n. +Proof. +elim: n => [|n IHn]; first exact: constt1. +rewrite !expgS consttM ?IHn //; exact: commuteX. +Qed. + +Lemma constt1P pi x : reflect (x.`_pi = 1) (pi^'.-elt x). +Proof. +rewrite -{2}[x]expg1 p_elt_exp -order_constt consttNK order_dvdn expg1. +exact: eqP. +Qed. + +Lemma constt_p_elt pi x : pi.-elt x -> x.`_pi = x. +Proof. +by rewrite -p_eltNK -{3}(consttC pi x) => /constt1P->; rewrite mulg1. +Qed. + +Lemma sub_in_constt pi1 pi2 x : + {in \pi(#[x]), {subset pi1 <= pi2}} -> x.`_pi2.`_pi1 = x.`_pi1. +Proof. +move=> pi12; rewrite -{2}(consttC pi2 x) consttM; last exact: commuteX2. +rewrite (constt1P _ x.`_pi2^' _) ?mulg1 //. +apply: sub_in_pnat (p_elt_constt _ x) => p; rewrite order_constt => pi_p. +apply: contra; apply: pi12. +by rewrite -[#[x]](partnC pi2^') // primes_mul // pi_p. +Qed. + +Lemma prod_constt x : \prod_(0 <= p < #[x].+1) x.`_p = x. +Proof. +pose lp n := [pred p | p < n]. +have: (lp #[x].+1).-elt x by apply/pnatP=> // p _; exact: dvdn_leq. +move/constt_p_elt=> def_x; symmetry; rewrite -{1}def_x {def_x}. +elim: _.+1 => [|p IHp]. + by rewrite big_nil; apply/constt1P; exact/pgroupP. +rewrite big_nat_recr //= -{}IHp -(consttC (lp p) x.`__); congr (_ * _). + rewrite sub_in_constt // => q _; exact: leqW. +set y := _.`__; rewrite -(consttC p y) (constt1P p^' _ _) ?mulg1. + by rewrite 2?sub_in_constt // => q _; move/eqnP->; rewrite !inE ?ltnn. +rewrite /p_elt pnatNK !order_constt -partnI. +apply: sub_in_pnat (part_pnat _ _) => q _. +by rewrite !inE ltnS -leqNgt -eqn_leq. +Qed. + +Lemma max_pgroupJ pi M G x : + x \in G -> [max M | pi.-subgroup(G) M] -> + [max M :^ x of M | pi.-subgroup(G) M]. +Proof. +move=> Gx /maxgroupP[piM maxM]; apply/maxgroupP. +split=> [|H piH]; first by rewrite psubgroupJ. +by rewrite -(conjsgKV x H) conjSg => /maxM/=-> //; rewrite psubgroupJ ?groupV. +Qed. + +Lemma comm_sub_max_pgroup pi H M G : + [max M | pi.-subgroup(G) M] -> pi.-group H -> H \subset G -> + commute H M -> H \subset M. +Proof. +case/maxgroupP=> /andP[sMG piM] maxM piH sHG cHM. +rewrite -(maxM (H <*> M)%G) /= comm_joingE ?(mulG_subl, mulG_subr) //. +by rewrite /psubgroup pgroupM piM piH mul_subG. +Qed. + +Lemma normal_sub_max_pgroup pi H M G : + [max M | pi.-subgroup(G) M] -> pi.-group H -> H <| G -> H \subset M. +Proof. +move=> maxM piH /andP[sHG nHG]. +apply: comm_sub_max_pgroup piH sHG _ => //; apply: commute_sym; apply: normC. +by apply: subset_trans nHG; case/andP: (maxgroupp maxM). +Qed. + +Lemma norm_sub_max_pgroup pi H M G : + [max M | pi.-subgroup(G) M] -> pi.-group H -> H \subset G -> + H \subset 'N(M) -> H \subset M. +Proof. by move=> maxM piH sHG /normC; exact: comm_sub_max_pgroup piH sHG. Qed. + +Lemma sub_pHall pi H G K : + pi.-Hall(G) H -> pi.-group K -> H \subset K -> K \subset G -> K :=: H. +Proof. +move=> hallH piK sHK sKG; apply/eqP; rewrite eq_sym eqEcard sHK. +by rewrite (card_Hall hallH) -(part_pnat_id piK) dvdn_leq ?partn_dvd ?cardSg. +Qed. + +Lemma Hall_max pi H G : pi.-Hall(G) H -> [max H | pi.-subgroup(G) H]. +Proof. +move=> hallH; apply/maxgroupP; split=> [|K]. + by rewrite /psubgroup; case/and3P: hallH => ->. +case/andP=> sKG piK sHK; exact: (sub_pHall hallH). +Qed. + +Lemma pHall_id pi H G : pi.-Hall(G) H -> pi.-group G -> H :=: G. +Proof. +by move=> hallH piG; rewrite (sub_pHall hallH piG) ?(pHall_sub hallH). +Qed. + +Lemma psubgroup1 pi G : pi.-subgroup(G) 1. +Proof. by rewrite /psubgroup sub1G pgroup1. Qed. + +Lemma Cauchy p G : prime p -> p %| #|G| -> {x | x \in G & #[x] = p}. +Proof. +move=> p_pr; elim: {G}_.+1 {-2}G (ltnSn #|G|) => // n IHn G. +rewrite ltnS => leGn pG; pose xpG := [pred x in G | #[x] == p]. +have [x /andP[Gx /eqP] | no_x] := pickP xpG; first by exists x. +have{pG n leGn IHn} pZ: p %| #|'C_G(G)|. + suffices /dvdn_addl <-: p %| #|G :\: 'C(G)| by rewrite cardsID. + have /acts_sum_card_orbit <-: [acts G, on G :\: 'C(G) | 'J]. + by apply/actsP=> x Gx y; rewrite !inE -!mem_conjgV -centJ conjGid ?groupV. + elim/big_rec: _ => // _ _ /imsetP[x /setDP[Gx nCx] ->] /dvdn_addl->. + have ltCx: 'C_G[x] \proper G by rewrite properE subsetIl subsetIidl sub_cent1. + have /negP: ~ p %| #|'C_G[x]|. + case/(IHn _ (leq_trans (proper_card ltCx) leGn))=> y /setIP[Gy _] /eqP-oy. + by have /andP[] := no_x y. + by apply/implyP; rewrite -index_cent1 indexgI implyNb -Euclid_dvdM ?LagrangeI. +have [Q maxQ _]: {Q | [max Q | p^'.-subgroup('C_G(G)) Q] & 1%G \subset Q}. + apply: maxgroup_exists; exact: psubgroup1. +case/andP: (maxgroupp maxQ) => sQC; rewrite /pgroup p'natE // => /negP[]. +apply: dvdn_trans pZ (cardSg _); apply/subsetP=> x /setIP[Gx Cx]. +rewrite -sub1set -gen_subG (normal_sub_max_pgroup maxQ) //; last first. + rewrite /normal subsetI !cycle_subG ?Gx ?cents_norm ?subIset ?andbT //=. + by rewrite centsC cycle_subG Cx. +rewrite /pgroup p'natE //= -[#|_|]/#[x]; apply/dvdnP=> [[m oxm]]. +have m_gt0: 0 < m by apply: dvdn_gt0 (order_gt0 x) _; rewrite oxm dvdn_mulr. +case/idP: (no_x (x ^+ m)); rewrite /= groupX //= orderXgcd //= oxm. +by rewrite gcdnC gcdnMr mulKn. +Qed. + +(* These lemmas actually hold for maximal pi-groups, but below we'll *) +(* derive from the Cauchy lemma that a normal max pi-group is Hall. *) + +Lemma sub_normal_Hall pi G H K : + pi.-Hall(G) H -> H <| G -> K \subset G -> (K \subset H) = pi.-group K. +Proof. +move=> hallH nsHG sKG; apply/idP/idP=> [sKH | piK]. + by rewrite (pgroupS sKH) ?(pHall_pgroup hallH). +apply: norm_sub_max_pgroup (Hall_max hallH) piK _ _ => //. +exact: subset_trans sKG (normal_norm nsHG). +Qed. + +Lemma mem_normal_Hall pi H G x : + pi.-Hall(G) H -> H <| G -> x \in G -> (x \in H) = pi.-elt x. +Proof. by rewrite -!cycle_subG; exact: sub_normal_Hall. Qed. + +Lemma uniq_normal_Hall pi H G K : + pi.-Hall(G) H -> H <| G -> [max K | pi.-subgroup(G) K] -> K :=: H. +Proof. +move=> hallH nHG /maxgroupP[/andP[sKG piK] /(_ H) -> //]. + exact: (maxgroupp (Hall_max hallH)). +by rewrite (sub_normal_Hall hallH). +Qed. + +End PgroupProps. + +Implicit Arguments pgroupP [gT pi G]. +Implicit Arguments constt1P [gT pi x]. +Prenex Implicits pgroupP constt1P. + +Section NormalHall. + +Variables (gT : finGroupType) (pi : nat_pred). +Implicit Types G H K : {group gT}. + +Lemma normal_max_pgroup_Hall G H : + [max H | pi.-subgroup(G) H] -> H <| G -> pi.-Hall(G) H. +Proof. +case/maxgroupP=> /andP[sHG piH] maxH nsHG; have [_ nHG] := andP nsHG. +rewrite /pHall sHG piH; apply/pnatP=> // p p_pr. +rewrite inE /= -pnatE // -card_quotient //. +case/Cauchy=> //= Hx; rewrite -sub1set -gen_subG -/<[Hx]> /order. +case/inv_quotientS=> //= K -> sHK sKG {Hx}. +rewrite card_quotient ?(subset_trans sKG) // => iKH; apply/negP=> pi_p. +rewrite -iKH -divgS // (maxH K) ?divnn ?cardG_gt0 // in p_pr. +by rewrite /psubgroup sKG /pgroup -(Lagrange sHK) mulnC pnat_mul iKH pi_p. +Qed. + +Lemma setI_normal_Hall G H K : + H <| G -> pi.-Hall(G) H -> K \subset G -> pi.-Hall(K) (H :&: K). +Proof. +move=> nsHG hallH sKG; apply: normal_max_pgroup_Hall; last first. + by rewrite /= setIC (normalGI sKG nsHG). +apply/maxgroupP; split=> [|M /andP[sMK piM] sHK_M]. + by rewrite /psubgroup subsetIr (pgroupS (subsetIl _ _) (pHall_pgroup hallH)). +apply/eqP; rewrite eqEsubset sHK_M subsetI sMK !andbT. +by rewrite (sub_normal_Hall hallH) // (subset_trans sMK). +Qed. + +End NormalHall. + +Section Morphim. + +Variables (aT rT : finGroupType) (D : {group aT}) (f : {morphism D >-> rT}). +Implicit Types (pi : nat_pred) (G H P : {group aT}). + +Lemma morphim_pgroup pi G : pi.-group G -> pi.-group (f @* G). +Proof. by apply: pnat_dvd; exact: dvdn_morphim. Qed. + +Lemma morphim_odd G : odd #|G| -> odd #|f @* G|. +Proof. by rewrite !odd_2'nat; exact: morphim_pgroup. Qed. + +Lemma pmorphim_pgroup pi G : + pi.-group ('ker f) -> G \subset D -> pi.-group (f @* G) = pi.-group G. +Proof. +move=> piker sGD; apply/idP/idP=> [pifG|]; last exact: morphim_pgroup. +apply: (@pgroupS _ _ (f @*^-1 (f @* G))); first by rewrite -sub_morphim_pre. +by rewrite /pgroup card_morphpre ?morphimS // pnat_mul; exact/andP. +Qed. + +Lemma morphim_p_index pi G H : + H \subset D -> pi.-nat #|G : H| -> pi.-nat #|f @* G : f @* H|. +Proof. +by move=> sHD; apply: pnat_dvd; rewrite index_morphim ?subIset // sHD orbT. +Qed. + +Lemma morphim_pHall pi G H : + H \subset D -> pi.-Hall(G) H -> pi.-Hall(f @* G) (f @* H). +Proof. +move=> sHD /and3P[sHG piH pi'GH]. +by rewrite /pHall morphimS // morphim_pgroup // morphim_p_index. +Qed. + +Lemma pmorphim_pHall pi G H : + G \subset D -> H \subset D -> pi.-subgroup(H :&: G) ('ker f) -> + pi.-Hall(f @* G) (f @* H) = pi.-Hall(G) H. +Proof. +move=> sGD sHD /andP[/subsetIP[sKH sKG] piK]; rewrite !pHallE morphimSGK //. +apply: andb_id2l => sHG; rewrite -(Lagrange sKH) -(Lagrange sKG) partnM //. +by rewrite (part_pnat_id piK) !card_morphim !(setIidPr _) // eqn_pmul2l. +Qed. + +Lemma morphim_Hall G H : H \subset D -> Hall G H -> Hall (f @* G) (f @* H). +Proof. +by move=> sHD /HallP[pi piH]; apply: (@pHall_Hall _ pi); exact: morphim_pHall. +Qed. + +Lemma morphim_pSylow p G P : + P \subset D -> p.-Sylow(G) P -> p.-Sylow(f @* G) (f @* P). +Proof. exact: morphim_pHall. Qed. + +Lemma morphim_p_group P : p_group P -> p_group (f @* P). +Proof. by move/morphim_pgroup; exact: pgroup_p. Qed. + +Lemma morphim_Sylow G P : P \subset D -> Sylow G P -> Sylow (f @* G) (f @* P). +Proof. +by move=> sPD /andP[pP hallP]; rewrite /Sylow morphim_p_group // morphim_Hall. +Qed. + +Lemma morph_p_elt pi x : x \in D -> pi.-elt x -> pi.-elt (f x). +Proof. by move=> Dx; apply: pnat_dvd; exact: morph_order. Qed. + +Lemma morph_constt pi x : x \in D -> f x.`_pi = (f x).`_pi. +Proof. +move=> Dx; rewrite -{2}(consttC pi x) morphM ?groupX //. +rewrite consttM; last by rewrite !morphX //; exact: commuteX2. +have: pi.-elt (f x.`_pi) by rewrite morph_p_elt ?groupX ?p_elt_constt //. +have: pi^'.-elt (f x.`_pi^') by rewrite morph_p_elt ?groupX ?p_elt_constt //. +by move/constt1P->; move/constt_p_elt->; rewrite mulg1. +Qed. + +End Morphim. + +Section Pquotient. + +Variables (pi : nat_pred) (gT : finGroupType) (p : nat) (G H K : {group gT}). +Hypothesis piK : pi.-group K. + +Lemma quotient_pgroup : pi.-group (K / H). Proof. exact: morphim_pgroup. Qed. + +Lemma quotient_pHall : + K \subset 'N(H) -> pi.-Hall(G) K -> pi.-Hall(G / H) (K / H). +Proof. exact: morphim_pHall. Qed. + +Lemma quotient_odd : odd #|K| -> odd #|K / H|. Proof. exact: morphim_odd. Qed. + +Lemma pquotient_pgroup : G \subset 'N(K) -> pi.-group (G / K) = pi.-group G. +Proof. by move=> nKG; rewrite pmorphim_pgroup ?ker_coset. Qed. + +Lemma pquotient_pHall : + K <| G -> K <| H -> pi.-Hall(G / K) (H / K) = pi.-Hall(G) H. +Proof. +case/andP=> sKG nKG; case/andP=> sKH nKH. +by rewrite pmorphim_pHall // ker_coset /psubgroup subsetI sKH sKG. +Qed. + +Lemma ltn_log_quotient : + p.-group G -> H :!=: 1 -> H \subset G -> logn p #|G / H| < logn p #|G|. +Proof. +move=> pG ntH sHG; apply: contraLR (ltn_quotient ntH sHG); rewrite -!leqNgt. +rewrite {2}(card_pgroup pG) {2}(card_pgroup (morphim_pgroup _ pG)). +by case: (posnP p) => [-> //|]; exact: leq_pexp2l. +Qed. + +End Pquotient. + +(* Application of card_Aut_cyclic to internal faithful action on cyclic *) +(* p-subgroups. *) +Section InnerAutCyclicPgroup. + +Variables (gT : finGroupType) (p : nat) (G C : {group gT}). +Hypothesis nCG : G \subset 'N(C). + +Lemma logn_quotient_cent_cyclic_pgroup : + p.-group C -> cyclic C -> logn p #|G / 'C_G(C)| <= (logn p #|C|).-1. +Proof. +move=> pC cycC; have [-> | ntC] := eqsVneq C 1. + by rewrite cent1T setIT trivg_quotient cards1 logn1. +have [p_pr _ [e oC]] := pgroup_pdiv pC ntC. +rewrite -ker_conj_aut (card_isog (first_isog_loc _ _)) //. +apply: leq_trans (dvdn_leq_log _ _ (cardSg (Aut_conj_aut _ _))) _ => //. +rewrite card_Aut_cyclic // oC totient_pfactor //= logn_Gauss ?pfactorK //. +by rewrite prime_coprime // gtnNdvd // -(subnKC (prime_gt1 p_pr)). +Qed. + +Lemma p'group_quotient_cent_prime : + prime p -> #|C| %| p -> p^'.-group (G / 'C_G(C)). +Proof. +move=> p_pr pC; have pgC: p.-group C := pnat_dvd pC (pnat_id p_pr). +have [_ dv_p] := primeP p_pr; case/pred2P: {dv_p pC}(dv_p _ pC) => [|pC]. + by move/card1_trivg->; rewrite cent1T setIT trivg_quotient pgroup1. +have le_oGC := logn_quotient_cent_cyclic_pgroup pgC. +rewrite /pgroup -partn_eq1 ?cardG_gt0 // -dvdn1 p_part pfactor_dvdn // logn1. +by rewrite (leq_trans (le_oGC _)) ?prime_cyclic // pC ?(pfactorK 1). +Qed. + +End InnerAutCyclicPgroup. + +Section PcoreDef. + +(* A functor needs to quantify over the finGroupType just beore the set. *) + +Variables (pi : nat_pred) (gT : finGroupType) (A : {set gT}). + +Definition pcore := \bigcap_(G | [max G | pi.-subgroup(A) G]) G. + +Canonical pcore_group : {group gT} := Eval hnf in [group of pcore]. + +End PcoreDef. + +Arguments Scope pcore [_ nat_scope group_scope]. +Arguments Scope pcore_group [_ nat_scope Group_scope]. +Notation "''O_' pi ( G )" := (pcore pi G) + (at level 8, pi at level 2, format "''O_' pi ( G )") : group_scope. +Notation "''O_' pi ( G )" := (pcore_group pi G) : Group_scope. + +Section PseriesDefs. + +Variables (pis : seq nat_pred) (gT : finGroupType) (A : {set gT}). + +Definition pcore_mod pi B := coset B @*^-1 'O_pi(A / B). +Canonical pcore_mod_group pi B : {group gT} := + Eval hnf in [group of pcore_mod pi B]. + +Definition pseries := foldr pcore_mod 1 (rev pis). + +Lemma pseries_group_set : group_set pseries. +Proof. rewrite /pseries; case: rev => [|pi1 pi1']; exact: groupP. Qed. + +Canonical pseries_group : {group gT} := group pseries_group_set. + +End PseriesDefs. + +Arguments Scope pseries [_ seq_scope group_scope]. +Local Notation ConsPred p := (@Cons nat_pred p%N) (only parsing). +Notation "''O_{' p1 , .. , pn } ( A )" := + (pseries (ConsPred p1 .. (ConsPred pn [::]) ..) A) + (at level 8, format "''O_{' p1 , .. , pn } ( A )") : group_scope. +Notation "''O_{' p1 , .. , pn } ( A )" := + (pseries_group (ConsPred p1 .. (ConsPred pn [::]) ..) A) : Group_scope. + +Section PCoreProps. + +Variables (pi : nat_pred) (gT : finGroupType). +Implicit Types (A : {set gT}) (G H M K : {group gT}). + +Lemma pcore_psubgroup G : pi.-subgroup(G) 'O_pi(G). +Proof. +have [M maxM _]: {M | [max M | pi.-subgroup(G) M] & 1%G \subset M}. + by apply: maxgroup_exists; rewrite /psubgroup sub1G pgroup1. +have sOM: 'O_pi(G) \subset M by exact: bigcap_inf. +have /andP[piM sMG] := maxgroupp maxM. +by rewrite /psubgroup (pgroupS sOM) // (subset_trans sOM). +Qed. + +Lemma pcore_pgroup G : pi.-group 'O_pi(G). +Proof. by case/andP: (pcore_psubgroup G). Qed. + +Lemma pcore_sub G : 'O_pi(G) \subset G. +Proof. by case/andP: (pcore_psubgroup G). Qed. + +Lemma pcore_sub_Hall G H : pi.-Hall(G) H -> 'O_pi(G) \subset H. +Proof. by move/Hall_max=> maxH; exact: bigcap_inf. Qed. + +Lemma pcore_max G H : pi.-group H -> H <| G -> H \subset 'O_pi(G). +Proof. +move=> piH nHG; apply/bigcapsP=> M maxM. +exact: normal_sub_max_pgroup piH nHG. +Qed. + +Lemma pcore_pgroup_id G : pi.-group G -> 'O_pi(G) = G. +Proof. by move=> piG; apply/eqP; rewrite eqEsubset pcore_sub pcore_max. Qed. + +Lemma pcore_normal G : 'O_pi(G) <| G. +Proof. +rewrite /(_ <| G) pcore_sub; apply/subsetP=> x Gx. +rewrite inE; apply/bigcapsP=> M maxM; rewrite sub_conjg. +by apply: bigcap_inf; apply: max_pgroupJ; rewrite ?groupV. +Qed. + +Lemma normal_Hall_pcore H G : pi.-Hall(G) H -> H <| G -> 'O_pi(G) = H. +Proof. +move=> hallH nHG; apply/eqP. +rewrite eqEsubset (sub_normal_Hall hallH) ?pcore_sub ?pcore_pgroup //=. +by rewrite pcore_max //= (pHall_pgroup hallH). +Qed. + +Lemma eq_Hall_pcore G H : + pi.-Hall(G) 'O_pi(G) -> pi.-Hall(G) H -> H :=: 'O_pi(G). +Proof. +move=> hallGpi hallH. +exact: uniq_normal_Hall (pcore_normal G) (Hall_max hallH). +Qed. + +Lemma sub_Hall_pcore G K : + pi.-Hall(G) 'O_pi(G) -> K \subset G -> (K \subset 'O_pi(G)) = pi.-group K. +Proof. by move=> hallGpi; exact: sub_normal_Hall (pcore_normal G). Qed. + +Lemma mem_Hall_pcore G x : + pi.-Hall(G) 'O_pi(G) -> x \in G -> (x \in 'O_pi(G)) = pi.-elt x. +Proof. move=> hallGpi; exact: mem_normal_Hall (pcore_normal G). Qed. + +Lemma sdprod_Hall_pcoreP H G : + pi.-Hall(G) 'O_pi(G) -> reflect ('O_pi(G) ><| H = G) (pi^'.-Hall(G) H). +Proof. +move=> hallGpi; rewrite -(compl_pHall H hallGpi) complgC. +exact: sdprod_normal_complP (pcore_normal G). +Qed. + +Lemma sdprod_pcore_HallP H G : + pi^'.-Hall(G) H -> reflect ('O_pi(G) ><| H = G) (pi.-Hall(G) 'O_pi(G)). +Proof. exact: sdprod_normal_p'HallP (pcore_normal G). Qed. + +Lemma pcoreJ G x : 'O_pi(G :^ x) = 'O_pi(G) :^ x. +Proof. +apply/eqP; rewrite eqEsubset -sub_conjgV. +rewrite !pcore_max ?pgroupJ ?pcore_pgroup ?normalJ ?pcore_normal //. +by rewrite -(normalJ _ _ x) conjsgKV pcore_normal. +Qed. + +End PCoreProps. + +Section MorphPcore. + +Implicit Types (pi : nat_pred) (gT rT : finGroupType). + +Lemma morphim_pcore pi : GFunctor.pcontinuous (pcore pi). +Proof. +move=> gT rT D G f; apply/bigcapsP=> M /normal_sub_max_pgroup; apply. + by rewrite morphim_pgroup ?pcore_pgroup. +apply: morphim_normal; exact: pcore_normal. +Qed. + +Lemma pcoreS pi gT (G H : {group gT}) : + H \subset G -> H :&: 'O_pi(G) \subset 'O_pi(H). +Proof. +move=> sHG; rewrite -{2}(setIidPl sHG). +do 2!rewrite -(morphim_idm (subsetIl H _)) morphimIdom; exact: morphim_pcore. +Qed. + +Canonical pcore_igFun pi := [igFun by pcore_sub pi & morphim_pcore pi]. +Canonical pcore_gFun pi := [gFun by morphim_pcore pi]. +Canonical pcore_pgFun pi := [pgFun by morphim_pcore pi]. + +Lemma pcore_char pi gT (G : {group gT}) : 'O_pi(G) \char G. +Proof. exact: gFchar. Qed. + +Section PcoreMod. + +Variable F : GFunctor.pmap. + +Lemma pcore_mod_sub pi gT (G : {group gT}) : pcore_mod G pi (F _ G) \subset G. +Proof. +have nFD := gFnorm F G; rewrite sub_morphpre_im ?pcore_sub //=. + by rewrite ker_coset_prim subIset // gen_subG gFsub. +by apply: subset_trans (pcore_sub _ _) _; apply: morphimS. +Qed. + +Lemma quotient_pcore_mod pi gT (G : {group gT}) (B : {set gT}) : + pcore_mod G pi B / B = 'O_pi(G / B). +Proof. +apply: morphpreK; apply: subset_trans (pcore_sub _ _) _. +by rewrite /= /quotient -morphimIdom morphimS ?subsetIl. +Qed. + +Lemma morphim_pcore_mod pi gT rT (D G : {group gT}) (f : {morphism D >-> rT}) : + f @* pcore_mod G pi (F _ G) \subset pcore_mod (f @* G) pi (F _ (f @* G)). +Proof. +have sDF: D :&: G \subset 'dom (coset (F _ G)). + by rewrite setIC subIset ?gFnorm. +have sDFf: D :&: G \subset 'dom (coset (F _ (f @* G)) \o f). + by rewrite -sub_morphim_pre ?subsetIl // morphimIdom gFnorm. +pose K := 'ker (restrm sDFf (coset (F _ (f @* G)) \o f)). +have sFK: 'ker (restrm sDF (coset (F _ G))) \subset K. + rewrite /K !ker_restrm ker_comp /= subsetI subsetIl /= -setIA. + rewrite -sub_morphim_pre ?subsetIl //. + by rewrite morphimIdom !ker_coset (setIidPr _) ?pmorphimF ?gFsub. +have sOF := pcore_sub pi (G / F _ G); have sDD: D :&: G \subset D :&: G by []. +rewrite -sub_morphim_pre -?quotientE; last first. + by apply: subset_trans (gFnorm F _); rewrite morphimS ?pcore_mod_sub. +suffices im_fact (H : {group gT}) : F _ G \subset H -> H \subset G -> + factm sFK sDD @* (H / F _ G) = f @* H / F _ (f @* G). +- rewrite -2?im_fact ?pcore_mod_sub ?gFsub //; + try by rewrite -{1}[F _ G]ker_coset morphpreS ?sub1G. + by rewrite quotient_pcore_mod morphim_pcore. +move=> sFH sHG; rewrite -(morphimIdom _ (H / _)) /= {2}morphim_restrm setIid. +rewrite -morphimIG ?ker_coset //. +rewrite -(morphim_restrm sDF) morphim_factm morphim_restrm. +by rewrite morphim_comp -quotientE -setIA morphimIdom (setIidPr _). +Qed. + +Lemma pcore_mod_res pi gT rT (D : {group gT}) (f : {morphism D >-> rT}) : + f @* pcore_mod D pi (F _ D) \subset pcore_mod (f @* D) pi (F _ (f @* D)). +Proof. exact: morphim_pcore_mod. Qed. + +Lemma pcore_mod1 pi gT (G : {group gT}) : pcore_mod G pi 1 = 'O_pi(G). +Proof. +rewrite /pcore_mod; have inj1 := coset1_injm gT; rewrite -injmF ?norms1 //. +by rewrite -(morphim_invmE inj1) morphim_invm ?norms1. +Qed. + +End PcoreMod. + +Lemma pseries_rcons pi pis gT (A : {set gT}) : + pseries (rcons pis pi) A = pcore_mod A pi (pseries pis A). +Proof. by rewrite /pseries rev_rcons. Qed. + +Lemma pseries_subfun pis : + GFunctor.closed (pseries pis) /\ GFunctor.pcontinuous (pseries pis). +Proof. +elim/last_ind: pis => [|pis pi [sFpi fFpi]]. + by split=> [gT G | gT rT D G f]; rewrite (sub1G, morphim1). +pose fF := [gFun by fFpi : GFunctor.continuous [igFun by sFpi & fFpi]]. +pose F := [pgFun by fFpi : GFunctor.hereditary fF]. +split=> [gT G | gT rT D G f]; rewrite !pseries_rcons ?(pcore_mod_sub F) //. +exact: (morphim_pcore_mod F). +Qed. + +Lemma pseries_sub pis : GFunctor.closed (pseries pis). +Proof. by case: (pseries_subfun pis). Qed. + +Lemma morphim_pseries pis : GFunctor.pcontinuous (pseries pis). +Proof. by case: (pseries_subfun pis). Qed. + +Lemma pseriesS pis : GFunctor.hereditary (pseries pis). +Proof. exact: (morphim_pseries pis). Qed. + +Canonical pseries_igFun pis := [igFun by pseries_sub pis & morphim_pseries pis]. +Canonical pseries_gFun pis := [gFun by morphim_pseries pis]. +Canonical pseries_pgFun pis := [pgFun by morphim_pseries pis]. + +Lemma pseries_char pis gT (G : {group gT}) : pseries pis G \char G. +Proof. exact: gFchar. Qed. + +Lemma pseries_normal pis gT (G : {group gT}) : pseries pis G <| G. +Proof. exact: gFnormal. Qed. + +Lemma pseriesJ pis gT (G : {group gT}) x : + pseries pis (G :^ x) = pseries pis G :^ x. +Proof. +rewrite -{1}(setIid G) -morphim_conj -(injmF _ (injm_conj G x)) //=. +by rewrite morphim_conj (setIidPr (pseries_sub _ _)). +Qed. + +Lemma pseries1 pi gT (G : {group gT}) : 'O_{pi}(G) = 'O_pi(G). +Proof. exact: pcore_mod1. Qed. + +Lemma pseries_pop pi pis gT (G : {group gT}) : + 'O_pi(G) = 1 -> pseries (pi :: pis) G = pseries pis G. +Proof. +by move=> OG1; rewrite /pseries rev_cons -cats1 foldr_cat /= pcore_mod1 OG1. +Qed. + +Lemma pseries_pop2 pi1 pi2 gT (G : {group gT}) : + 'O_pi1(G) = 1 -> 'O_{pi1, pi2}(G) = 'O_pi2(G). +Proof. by move/pseries_pop->; exact: pseries1. Qed. + +Lemma pseries_sub_catl pi1s pi2s gT (G : {group gT}) : + pseries pi1s G \subset pseries (pi1s ++ pi2s) G. +Proof. +elim/last_ind: pi2s => [|pi pis IHpi]; rewrite ?cats0 // -rcons_cat. +by rewrite pseries_rcons; apply: subset_trans IHpi _; rewrite sub_cosetpre. +Qed. + +Lemma quotient_pseries pis pi gT (G : {group gT}) : + pseries (rcons pis pi) G / pseries pis G = 'O_pi(G / pseries pis G). +Proof. by rewrite pseries_rcons quotient_pcore_mod. Qed. + +Lemma pseries_norm2 pi1s pi2s gT (G : {group gT}) : + pseries pi2s G \subset 'N(pseries pi1s G). +Proof. +apply: subset_trans (normal_norm (pseries_normal pi1s G)); exact: pseries_sub. +Qed. + +Lemma pseries_sub_catr pi1s pi2s gT (G : {group gT}) : + pseries pi2s G \subset pseries (pi1s ++ pi2s) G. +Proof. +elim: pi1s => //= pi1 pi1s /subset_trans; apply. +elim/last_ind: {pi1s pi2s}(_ ++ _) => [|pis pi IHpi]; first exact: sub1G. +rewrite -rcons_cons (pseries_rcons _ (pi1 :: pis)). +rewrite -sub_morphim_pre ?pseries_norm2 //. +apply: pcore_max; last by rewrite morphim_normal ?pseries_normal. +have: pi.-group (pseries (rcons pis pi) G / pseries pis G). + by rewrite quotient_pseries pcore_pgroup. +by apply: pnat_dvd; rewrite !card_quotient ?pseries_norm2 // indexgS. +Qed. + +Lemma quotient_pseries2 pi1 pi2 gT (G : {group gT}) : + 'O_{pi1, pi2}(G) / 'O_pi1(G) = 'O_pi2(G / 'O_pi1(G)). +Proof. by rewrite -pseries1 -quotient_pseries. Qed. + +Lemma quotient_pseries_cat pi1s pi2s gT (G : {group gT}) : + pseries (pi1s ++ pi2s) G / pseries pi1s G + = pseries pi2s (G / pseries pi1s G). +Proof. +elim/last_ind: pi2s => [|pi2s pi IHpi]; first by rewrite cats0 trivg_quotient. +have psN := pseries_normal _ G; set K := pseries _ G. +case: (third_isom (pseries_sub_catl pi1s pi2s G) (psN _)) => //= f inj_f im_f. +have nH2H: pseries pi2s (G / K) <| pseries (pi1s ++ rcons pi2s pi) G / K. + rewrite -IHpi morphim_normal // -cats1 catA. + by apply/andP; rewrite pseries_sub_catl pseries_norm2. +apply: (quotient_inj nH2H). + by apply/andP; rewrite /= -cats1 pseries_sub_catl pseries_norm2. +rewrite /= quotient_pseries /= -IHpi -rcons_cat. +rewrite -[G / _ / _](morphim_invm inj_f) //= {2}im_f //. +rewrite -(@injmF [igFun of pcore pi]) /= ?injm_invm ?im_f // -quotient_pseries. +by rewrite -im_f ?morphim_invm ?morphimS ?normal_sub. +Qed. + +Lemma pseries_catl_id pi1s pi2s gT (G : {group gT}) : + pseries pi1s (pseries (pi1s ++ pi2s) G) = pseries pi1s G. +Proof. +elim/last_ind: pi1s => [//|pi1s pi IHpi] in pi2s *. +apply: (@quotient_inj _ (pseries_group pi1s G)). +- rewrite /= -(IHpi (pi :: pi2s)) cat_rcons /(_ <| _) pseries_norm2. + by rewrite -cats1 pseries_sub_catl. +- by rewrite /= /(_ <| _) pseries_norm2 -cats1 pseries_sub_catl. +rewrite /= cat_rcons -(IHpi (pi :: pi2s)) {1}quotient_pseries IHpi. +apply/eqP; rewrite quotient_pseries eqEsubset !pcore_max ?pcore_pgroup //=. + rewrite -quotient_pseries morphim_normal // /(_ <| _) pseries_norm2. + by rewrite -cat_rcons pseries_sub_catl. +by rewrite (char_normal_trans (pcore_char _ _)) ?quotient_normal ?gFnormal. +Qed. + +Lemma pseries_char_catl pi1s pi2s gT (G : {group gT}) : + pseries pi1s G \char pseries (pi1s ++ pi2s) G. +Proof. by rewrite -(pseries_catl_id pi1s pi2s G) pseries_char. Qed. + +Lemma pseries_catr_id pi1s pi2s gT (G : {group gT}) : + pseries pi2s (pseries (pi1s ++ pi2s) G) = pseries pi2s G. +Proof. +elim/last_ind: pi2s => [//|pi2s pi IHpi] in G *. +have Epis: pseries pi2s (pseries (pi1s ++ rcons pi2s pi) G) = pseries pi2s G. + by rewrite -cats1 catA -2!IHpi pseries_catl_id. +apply: (@quotient_inj _ (pseries_group pi2s G)). +- by rewrite /= -Epis /(_ <| _) pseries_norm2 -cats1 pseries_sub_catl. +- by rewrite /= /(_ <| _) pseries_norm2 -cats1 pseries_sub_catl. +rewrite /= -Epis {1}quotient_pseries Epis quotient_pseries. +apply/eqP; rewrite eqEsubset !pcore_max ?pcore_pgroup //=. + rewrite -quotient_pseries morphim_normal // /(_ <| _) pseries_norm2. + by rewrite pseries_sub_catr. +apply: char_normal_trans (pcore_char pi _) (morphim_normal _ _). +exact: pseries_normal. +Qed. + +Lemma pseries_char_catr pi1s pi2s gT (G : {group gT}) : + pseries pi2s G \char pseries (pi1s ++ pi2s) G. +Proof. by rewrite -(pseries_catr_id pi1s pi2s G) pseries_char. Qed. + +Lemma pcore_modp pi gT (G H : {group gT}) : + H <| G -> pi.-group H -> pcore_mod G pi H = 'O_pi(G). +Proof. +move=> nsHG piH; apply/eqP; rewrite eqEsubset andbC. +have nHG := normal_norm nsHG; have sOG := subset_trans (pcore_sub pi _). +rewrite -sub_morphim_pre ?(sOG, morphim_pcore) // pcore_max //. + rewrite -(pquotient_pgroup piH) ?subsetIl //. + by rewrite quotient_pcore_mod pcore_pgroup. +by rewrite -{2}(quotientGK nsHG) morphpre_normal ?pcore_normal ?sOG ?morphimS. +Qed. + +Lemma pquotient_pcore pi gT (G H : {group gT}) : + H <| G -> pi.-group H -> 'O_pi(G / H) = 'O_pi(G) / H. +Proof. by move=> nsHG piH; rewrite -quotient_pcore_mod pcore_modp. Qed. + +Lemma trivg_pcore_quotient pi gT (G : {group gT}) : 'O_pi(G / 'O_pi(G)) = 1. +Proof. +by rewrite pquotient_pcore ?pcore_normal ?pcore_pgroup // trivg_quotient. +Qed. + +Lemma pseries_rcons_id pis pi gT (G : {group gT}) : + pseries (rcons (rcons pis pi) pi) G = pseries (rcons pis pi) G. +Proof. +apply/eqP; rewrite -!cats1 eqEsubset pseries_sub_catl andbT -catA. +rewrite -(quotientSGK _ (pseries_sub_catl _ _ _)) ?pseries_norm2 //. +rewrite !quotient_pseries_cat -quotient_sub1 ?pseries_norm2 //. +by rewrite quotient_pseries_cat /= !pseries1 trivg_pcore_quotient. +Qed. + +End MorphPcore. + +Section EqPcore. + +Variables gT : finGroupType. +Implicit Types (pi rho : nat_pred) (G H : {group gT}). + +Lemma sub_in_pcore pi rho G : + {in \pi(G), {subset pi <= rho}} -> 'O_pi(G) \subset 'O_rho(G). +Proof. +move=> pi_sub_rho; rewrite pcore_max ?pcore_normal //. +apply: sub_in_pnat (pcore_pgroup _ _) => p. +move/(piSg (pcore_sub _ _)); exact: pi_sub_rho. +Qed. + +Lemma sub_pcore pi rho G : {subset pi <= rho} -> 'O_pi(G) \subset 'O_rho(G). +Proof. by move=> pi_sub_rho; exact: sub_in_pcore (in1W pi_sub_rho). Qed. + +Lemma eq_in_pcore pi rho G : {in \pi(G), pi =i rho} -> 'O_pi(G) = 'O_rho(G). +Proof. +move=> eq_pi_rho; apply/eqP; rewrite eqEsubset. +by rewrite !sub_in_pcore // => p /eq_pi_rho->. +Qed. + +Lemma eq_pcore pi rho G : pi =i rho -> 'O_pi(G) = 'O_rho(G). +Proof. by move=> eq_pi_rho; exact: eq_in_pcore (in1W eq_pi_rho). Qed. + +Lemma pcoreNK pi G : 'O_pi^'^'(G) = 'O_pi(G). +Proof. by apply: eq_pcore; exact: negnK. Qed. + +Lemma eq_p'core pi rho G : pi =i rho -> 'O_pi^'(G) = 'O_rho^'(G). +Proof. by move/eq_negn; exact: eq_pcore. Qed. + +Lemma sdprod_Hall_p'coreP pi H G : + pi^'.-Hall(G) 'O_pi^'(G) -> reflect ('O_pi^'(G) ><| H = G) (pi.-Hall(G) H). +Proof. by rewrite -(pHallNK pi G H); exact: sdprod_Hall_pcoreP. Qed. + +Lemma sdprod_p'core_HallP pi H G : + pi.-Hall(G) H -> reflect ('O_pi^'(G) ><| H = G) (pi^'.-Hall(G) 'O_pi^'(G)). +Proof. by rewrite -(pHallNK pi G H); exact: sdprod_pcore_HallP. Qed. + +Lemma pcoreI pi rho G : 'O_[predI pi & rho](G) = 'O_pi('O_rho(G)). +Proof. +apply/eqP; rewrite eqEsubset !pcore_max //. +- rewrite /pgroup pnatI [pnat _ _]pcore_pgroup. + exact: pgroupS (pcore_sub _ _) (pcore_pgroup _ _). +- exact: char_normal_trans (pcore_char _ _) (pcore_normal _ _). +- by apply: sub_in_pnat (pcore_pgroup _ _) => p _ /andP[]. +apply/andP; split; first by apply: sub_pcore => p /andP[]. +by rewrite (subset_trans (pcore_sub _ _)) ?gFnorm. +Qed. + +Lemma bigcap_p'core pi G : + G :&: \bigcap_(p < #|G|.+1 | (p : nat) \in pi) 'O_p^'(G) = 'O_pi^'(G). +Proof. +apply/eqP; rewrite eqEsubset subsetI pcore_sub pcore_max /=. +- by apply/bigcapsP=> p pi_p; apply: sub_pcore => r; apply: contraNneq => ->. +- apply/pgroupP=> q q_pr qGpi'; apply: contraL (eqxx q) => /= pi_q. + apply: (pgroupP (pcore_pgroup q^' G)) => //. + have qG: q %| #|G| by rewrite (dvdn_trans qGpi') // cardSg ?subsetIl. + have ltqG: q < #|G|.+1 by rewrite ltnS dvdn_leq. + rewrite (dvdn_trans qGpi') ?cardSg ?subIset //= orbC. + by rewrite (bigcap_inf (Ordinal ltqG)). +rewrite /normal subsetIl normsI ?normG // norms_bigcap //. +by apply/bigcapsP => p _; exact: gFnorm. +Qed. + +Lemma coprime_pcoreC (rT : finGroupType) pi G (R : {group rT}) : + coprime #|'O_pi(G)| #|'O_pi^'(R)|. +Proof. exact: pnat_coprime (pcore_pgroup _ _) (pcore_pgroup _ _). Qed. + +Lemma TI_pcoreC pi G H : 'O_pi(G) :&: 'O_pi^'(H) = 1. +Proof. by rewrite coprime_TIg ?coprime_pcoreC. Qed. + +Lemma pcore_setI_normal pi G H : H <| G -> 'O_pi(G) :&: H = 'O_pi(H). +Proof. +move=> nsHG; apply/eqP; rewrite eqEsubset subsetI pcore_sub. +rewrite !pcore_max ?(pgroupS (subsetIl _ H)) ?pcore_pgroup //=. + exact: char_normal_trans (pcore_char pi H) nsHG. +by rewrite setIC (normalGI (normal_sub nsHG)) ?pcore_normal. +Qed. + +End EqPcore. + +Implicit Arguments sdprod_Hall_pcoreP [gT pi G H]. +Implicit Arguments sdprod_Hall_p'coreP [gT pi G H]. + +Section Injm. + +Variables (aT rT : finGroupType) (D : {group aT}) (f : {morphism D >-> rT}). +Hypothesis injf : 'injm f. +Implicit Types (A : {set aT}) (G H : {group aT}). + +Lemma injm_pgroup pi A : A \subset D -> pi.-group (f @* A) = pi.-group A. +Proof. by move=> sAD; rewrite /pgroup card_injm. Qed. + +Lemma injm_pelt pi x : x \in D -> pi.-elt (f x) = pi.-elt x. +Proof. by move=> Dx; rewrite /p_elt order_injm. Qed. + +Lemma injm_pHall pi G H : + G \subset D -> H \subset D -> pi.-Hall(f @* G) (f @* H) = pi.-Hall(G) H. +Proof. by move=> sGD sGH; rewrite !pHallE injmSK ?card_injm. Qed. + +Lemma injm_pcore pi G : G \subset D -> f @* 'O_pi(G) = 'O_pi(f @* G). +Proof. exact: injmF. Qed. + +Lemma injm_pseries pis G : + G \subset D -> f @* pseries pis G = pseries pis (f @* G). +Proof. exact: injmF. Qed. + +End Injm. + +Section Isog. + +Variables (aT rT : finGroupType) (G : {group aT}) (H : {group rT}). + +Lemma isog_pgroup pi : G \isog H -> pi.-group G = pi.-group H. +Proof. by move=> isoGH; rewrite /pgroup (card_isog isoGH). Qed. + +Lemma isog_pcore pi : G \isog H -> 'O_pi(G) \isog 'O_pi(H). +Proof. exact: gFisog. Qed. + +Lemma isog_pseries pis : G \isog H -> pseries pis G \isog pseries pis H. +Proof. exact: gFisog. Qed. + +End Isog. |
