diff options
| author | Georges Gonthier | 2019-11-22 10:02:04 +0100 |
|---|---|---|
| committer | Assia Mahboubi | 2019-11-22 10:02:04 +0100 |
| commit | 317267c618ecff861ec6539a2d6063cef298d720 (patch) | |
| tree | 8b9f3af02879faf1bba3ee9e7befcb52f44107ed /mathcomp/solvable/jordanholder.v | |
| parent | b1ca6a9be6861f6c369db642bc194cf78795a66f (diff) | |
New generalised induction idiom (#434)
Replaced the legacy generalised induction idiom with a more robust one
that does not rely on the `{-2}` numerical occurrence selector, using
either new helper lemmas `ubnP` and `ltnSE` or a specific `nat`
induction principle `ltn_ind`.
Added (non-strict in)equality induction helper lemmas
Added `ubnP[lg]?eq` helper lemmas that abstract an integer expression
along with some (in)equality, in preparation for some generalised
induction. Note that while `ubnPleq` is very similar to `ubnP` (indeed
`ubnP M` is basically `ubnPleq M.+1`), `ubnPgeq` is used to remember
that the inductive value remains below the initial one.
Used the change log to give notice to users to update the generalised
induction idioms in their proofs to one of the new forms before
Mathcomp 1.11.
Diffstat (limited to 'mathcomp/solvable/jordanholder.v')
| -rw-r--r-- | mathcomp/solvable/jordanholder.v | 22 |
1 files changed, 10 insertions, 12 deletions
diff --git a/mathcomp/solvable/jordanholder.v b/mathcomp/solvable/jordanholder.v index d191e20..3d3162b 100644 --- a/mathcomp/solvable/jordanholder.v +++ b/mathcomp/solvable/jordanholder.v @@ -174,8 +174,7 @@ Qed. Lemma JordanHolderUniqueness (G : gTg) (s1 s2 : seq gTg) : comps G s1 -> comps G s2 -> perm_eq (mkfactors G s1) (mkfactors G s2). Proof. -elim: {G}#|G| {-2}G (leqnn #|G|) => [|n Hi] G cG in s1 s2 * => cs1 cs2. - by rewrite leqNgt cardG_gt0 in cG. +have [n] := ubnP #|G|; elim: n G => // n Hi G in s1 s2 * => /ltnSE-cG cs1 cs2. have [G1 | ntG] := boolP (G :==: 1). have -> : s1 = [::] by apply/eqP; rewrite -(trivg_comps cs1). have -> : s2 = [::] by apply/eqP; rewrite -(trivg_comps cs2). @@ -188,10 +187,10 @@ case es2: s2 cs2 => [|N2 st2] cs2 {s1 es1}. by move: (trivg_comps cs2); rewrite eqxx; move/negP:ntG. case/andP: cs1 => /= lst1; case/andP=> maxN_1 pst1. case/andP: cs2 => /= lst2; case/andP=> maxN_2 pst2. -have cN1 : #|N1| <= n. - by rewrite -ltnS (leq_trans _ cG) ?proper_card ?(maxnormal_proper maxN_1). -have cN2 : #|N2| <= n. - by rewrite -ltnS (leq_trans _ cG) ?proper_card ?(maxnormal_proper maxN_2). +have cN1 : #|N1| < n. + by rewrite (leq_trans _ cG) ?proper_card ?(maxnormal_proper maxN_1). +have cN2 : #|N2| < n. + by rewrite (leq_trans _ cG) ?proper_card ?(maxnormal_proper maxN_2). case: (N1 =P N2) {s2 es2} => [eN12 |]. by rewrite eN12 /= perm_cons Hi // /comps ?lst2 //= -eN12 lst1. move/eqP; rewrite -val_eqE /=; move/eqP=> neN12. @@ -588,8 +587,7 @@ Lemma StrongJordanHolderUniqueness (G : {group rT}) (s1 s2 : seq {group rT}) : G \subset D -> acomps to G s1 -> acomps to G s2 -> perm_eq (mkfactors G s1) (mkfactors G s2). Proof. -elim: {G} #|G| {-2}G (leqnn #|G|) => [|n Hi] G cG in s1 s2 * => hsD cs1 cs2. - by rewrite leqNgt cardG_gt0 in cG. +have [n] := ubnP #|G|; elim: n G => // n Hi G in s1 s2 * => cG hsD cs1 cs2. case/orP: (orbN (G :==: 1)) => [tG | ntG]. have -> : s1 = [::] by apply/eqP; rewrite -(trivg_acomps cs1). have -> : s2 = [::] by apply/eqP; rewrite -(trivg_acomps cs2). @@ -608,10 +606,10 @@ have sN1D : N1 \subset D. by apply: subset_trans hsD; apply: maxainv_sub maxN_1. have sN2D : N2 \subset D. by apply: subset_trans hsD; apply: maxainv_sub maxN_2. -have cN1 : #|N1| <= n. - by rewrite -ltnS (leq_trans _ cG) ?proper_card ?(maxainv_proper maxN_1). -have cN2 : #|N2| <= n. - by rewrite -ltnS (leq_trans _ cG) ?proper_card ?(maxainv_proper maxN_2). +have cN1 : #|N1| < n. + by rewrite -ltnS (leq_trans _ cG) ?ltnS ?proper_card ?(maxainv_proper maxN_1). +have cN2 : #|N2| < n. + by rewrite -ltnS (leq_trans _ cG) ?ltnS ?proper_card ?(maxainv_proper maxN_2). case: (N1 =P N2) {s2 es2} => [eN12 |]. by rewrite eN12 /= perm_cons Hi // /acomps ?lst2 //= -eN12 lst1. move/eqP; rewrite -val_eqE /=; move/eqP=> neN12. |
