aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/solvable/gseries.v
diff options
context:
space:
mode:
authorEnrico Tassi2015-03-09 11:07:53 +0100
committerEnrico Tassi2015-03-09 11:24:38 +0100
commitfc84c27eac260dffd8f2fb1cb56d599f1e3486d9 (patch)
treec16205f1637c80833a4c4598993c29fa0fd8c373 /mathcomp/solvable/gseries.v
Initial commit
Diffstat (limited to 'mathcomp/solvable/gseries.v')
-rw-r--r--mathcomp/solvable/gseries.v546
1 files changed, 546 insertions, 0 deletions
diff --git a/mathcomp/solvable/gseries.v b/mathcomp/solvable/gseries.v
new file mode 100644
index 0000000..4e299e3
--- /dev/null
+++ b/mathcomp/solvable/gseries.v
@@ -0,0 +1,546 @@
+(* (c) Copyright Microsoft Corporation and Inria. All rights reserved. *)
+Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq path fintype bigop.
+Require Import finset fingroup morphism automorphism quotient action.
+Require Import commutator center.
+(******************************************************************************)
+(* H <|<| G <=> H is subnormal in G, i.e., H <| ... <| G. *)
+(* invariant_factor A H G <=> A normalises both H and G, and H <| G. *)
+(* A.-invariant <=> the (invariant_factor A) relation, in the context *)
+(* of the g_rel.-series notation. *)
+(* g_rel.-series H s <=> H :: s is a sequence of groups whose projection *)
+(* to sets satisfies relation g_rel pairwise; for *)
+(* example H <|<| G iff G = last H s for some s such *)
+(* that normal.-series H s. *)
+(* stable_factor A H G == H <| G and A centralises G / H. *)
+(* A.-stable == the stable_factor relation, in the scope of the *)
+(* r.-series notation. *)
+(* G.-central == the central_factor relation, in the scope of the *)
+(* r.-series notation. *)
+(* maximal M G == M is a maximal proper subgroup of G. *)
+(* maximal_eq M G == (M == G) or (maximal M G). *)
+(* maxnormal M G N == M is a maximal subgroup of G normalized by N. *)
+(* minnormal M N == M is a minimal nontrivial group normalized by N. *)
+(* simple G == G is a (nontrivial) simple group. *)
+(* := minnormal G G *)
+(* G.-chief == the chief_factor relation, in the scope of the *)
+(* r.-series notation. *)
+(******************************************************************************)
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+Unset Printing Implicit Defensive.
+
+Import GroupScope.
+
+Section GroupDefs.
+
+Variable gT : finGroupType.
+Implicit Types A B U V : {set gT}.
+
+Notation Local groupT := (group_of (Phant gT)).
+
+Definition subnormal A B :=
+ (A \subset B) && (iter #|B| (fun N => generated (class_support A N)) B == A).
+
+Definition invariant_factor A B C :=
+ [&& A \subset 'N(B), A \subset 'N(C) & B <| C].
+
+Definition group_rel_of (r : rel {set gT}) := [rel H G : groupT | r H G].
+
+Definition stable_factor A V U :=
+ ([~: U, A] \subset V) && (V <| U). (* this orders allows and3P to be used *)
+
+Definition central_factor A V U :=
+ [&& [~: U, A] \subset V, V \subset U & U \subset A].
+
+Definition maximal A B := [max A of G | G \proper B].
+
+Definition maximal_eq A B := (A == B) || maximal A B.
+
+Definition maxnormal A B U := [max A of G | G \proper B & U \subset 'N(G)].
+
+Definition minnormal A B := [min A of G | G :!=: 1 & B \subset 'N(G)].
+
+Definition simple A := minnormal A A.
+
+Definition chief_factor A V U := maxnormal V U A && (U <| A).
+End GroupDefs.
+
+Arguments Scope subnormal [_ group_scope group_scope].
+Arguments Scope invariant_factor [_ group_scope group_scope group_scope].
+Arguments Scope stable_factor [_ group_scope group_scope group_scope].
+Arguments Scope central_factor [_ group_scope group_scope group_scope].
+Arguments Scope maximal [_ group_scope group_scope].
+Arguments Scope maximal_eq [_ group_scope group_scope].
+Arguments Scope maxnormal [_ group_scope group_scope group_scope].
+Arguments Scope minnormal [_ group_scope group_scope].
+Arguments Scope simple [_ group_scope].
+Arguments Scope chief_factor [_ group_scope group_scope group_scope].
+Prenex Implicits subnormal maximal simple.
+
+Notation "H <|<| G" := (subnormal H G)
+ (at level 70, no associativity) : group_scope.
+
+Notation "A .-invariant" := (invariant_factor A)
+ (at level 2, format "A .-invariant") : group_rel_scope.
+Notation "A .-stable" := (stable_factor A)
+ (at level 2, format "A .-stable") : group_rel_scope.
+Notation "A .-central" := (central_factor A)
+ (at level 2, format "A .-central") : group_rel_scope.
+Notation "G .-chief" := (chief_factor G)
+ (at level 2, format "G .-chief") : group_rel_scope.
+
+Arguments Scope group_rel_of [_ group_rel_scope Group_scope Group_scope].
+
+Notation "r .-series" := (path (rel_of_simpl_rel (group_rel_of r)))
+ (at level 2, format "r .-series") : group_scope.
+
+Section Subnormal.
+
+Variable gT : finGroupType.
+Implicit Types (A B C D : {set gT}) (G H K : {group gT}).
+
+Let setIgr H G := (G :&: H)%G.
+Let sub_setIgr G H : G \subset H -> G = setIgr H G.
+Proof. by move/setIidPl/group_inj. Qed.
+
+Let path_setIgr H G s :
+ normal.-series H s -> normal.-series (setIgr G H) (map (setIgr G) s).
+Proof.
+elim: s H => //= K s IHs H /andP[/andP[sHK nHK] Ksn].
+by rewrite /normal setSI ?normsIG ?IHs.
+Qed.
+
+Lemma subnormalP H G :
+ reflect (exists2 s, normal.-series H s & last H s = G) (H <|<| G).
+Proof.
+apply: (iffP andP) => [[sHG snHG] | [s Hsn <-{G}]].
+ elim: {G}#|G| {-2}G sHG snHG => [|m IHm] G sHG.
+ by exists [::]; last by apply/eqP; rewrite eq_sym.
+ rewrite iterSr => /IHm[|s Hsn defG].
+ by rewrite sub_gen // class_supportEr (bigD1 1) //= conjsg1 subsetUl.
+ exists (rcons s G); rewrite ?last_rcons // -cats1 cat_path Hsn defG /=.
+ rewrite /normal gen_subG class_support_subG //=.
+ by rewrite norms_gen ?class_support_norm.
+set f := fun _ => <<_>>; have idf: iter _ f H == H.
+ by elim=> //= m IHm; rewrite (eqP IHm) /f class_support_id genGid.
+elim: {s}(size s) {-2}s (eqxx (size s)) Hsn => [[] //= | m IHm s].
+case/lastP: s => // s G; rewrite size_rcons last_rcons -cats1 cat_path /=.
+set K := last H s => def_m /and3P[Hsn /andP[sKG nKG] _].
+have:= sKG; rewrite subEproper; case/predU1P=> [<-|prKG]; first exact: IHm.
+pose L := [group of f G].
+have sHK: H \subset K by case/IHm: Hsn.
+have sLK: L \subset K by rewrite gen_subG class_support_sub_norm.
+rewrite -(subnK (proper_card (sub_proper_trans sLK prKG))) iter_add iterSr.
+have defH: H = setIgr L H by rewrite -sub_setIgr ?sub_gen ?sub_class_support.
+have: normal.-series H (map (setIgr L) s) by rewrite defH path_setIgr.
+case/IHm=> [|_]; first by rewrite size_map.
+by rewrite {1 2}defH last_map (subset_trans sHK) //= (setIidPr sLK) => /eqP->.
+Qed.
+
+Lemma subnormal_refl G : G <|<| G.
+Proof. by apply/subnormalP; exists [::]. Qed.
+
+Lemma subnormal_trans K H G : H <|<| K -> K <|<| G -> H <|<| G.
+Proof.
+case/subnormalP=> [s1 Hs1 <-] /subnormalP[s2 Hs12 <-].
+by apply/subnormalP; exists (s1 ++ s2); rewrite ?last_cat // cat_path Hs1.
+Qed.
+
+Lemma normal_subnormal H G : H <| G -> H <|<| G.
+Proof. by move=> nsHG; apply/subnormalP; exists [:: G]; rewrite //= nsHG. Qed.
+
+Lemma setI_subnormal G H K : K \subset G -> H <|<| G -> H :&: K <|<| K.
+Proof.
+move=> sKG /subnormalP[s Hs defG]; apply/subnormalP.
+exists (map (setIgr K) s); first exact: path_setIgr.
+rewrite (last_map (setIgr K)) defG.
+by apply: val_inj; rewrite /= (setIidPr sKG).
+Qed.
+
+Lemma subnormal_sub G H : H <|<| G -> H \subset G.
+Proof. by case/andP. Qed.
+
+Lemma invariant_subnormal A G H :
+ A \subset 'N(G) -> A \subset 'N(H) -> H <|<| G ->
+ exists2 s, (A.-invariant).-series H s & last H s = G.
+Proof.
+move=> nGA nHA /andP[]; move: #|G| => m.
+elim: m => [|m IHm] in G nGA * => sHG.
+ by rewrite eq_sym; exists [::]; last exact/eqP.
+rewrite iterSr; set K := <<_>>.
+have nKA: A \subset 'N(K) by rewrite norms_gen ?norms_class_support.
+have sHK: H \subset K by rewrite sub_gen ?sub_class_support.
+case/IHm=> // s Hsn defK; exists (rcons s G); last by rewrite last_rcons.
+rewrite rcons_path Hsn !andbA defK nGA nKA /= -/K.
+by rewrite gen_subG class_support_subG ?norms_gen ?class_support_norm.
+Qed.
+
+Lemma subnormalEsupport G H :
+ H <|<| G -> H :=: G \/ <<class_support H G>> \proper G.
+Proof.
+case/andP=> sHG; set K := <<_>> => /eqP <-.
+have: K \subset G by rewrite gen_subG class_support_subG.
+rewrite subEproper; case/predU1P=> [defK|]; [left | by right].
+by elim: #|G| => //= _ ->.
+Qed.
+
+Lemma subnormalEr G H : H <|<| G ->
+ H :=: G \/ (exists K : {group gT}, [/\ H <|<| K, K <| G & K \proper G]).
+Proof.
+case/subnormalP=> s Hs <-{G}.
+elim/last_ind: s Hs => [|s G IHs]; first by left.
+rewrite last_rcons -cats1 cat_path /= andbT; set K := last H s.
+case/andP=> Hs nsKG; have:= normal_sub nsKG; rewrite subEproper.
+case/predU1P=> [<- | prKG]; [exact: IHs | right; exists K; split=> //].
+by apply/subnormalP; exists s.
+Qed.
+
+Lemma subnormalEl G H : H <|<| G ->
+ H :=: G \/ (exists K : {group gT}, [/\ H <| K, K <|<| G & H \proper K]).
+Proof.
+case/subnormalP=> s Hs <-{G}; elim: s H Hs => /= [|K s IHs] H; first by left.
+case/andP=> nsHK Ks; have:= normal_sub nsHK; rewrite subEproper.
+case/predU1P=> [-> | prHK]; [exact: IHs | right; exists K; split=> //].
+by apply/subnormalP; exists s.
+Qed.
+
+End Subnormal.
+
+Implicit Arguments subnormalP [gT G H].
+Prenex Implicits subnormalP.
+
+Section MorphSubNormal.
+
+Variable gT : finGroupType.
+Implicit Type G H K : {group gT}.
+
+Lemma morphim_subnormal (rT : finGroupType) G (f : {morphism G >-> rT}) H K :
+ H <|<| K -> f @* H <|<| f @* K.
+Proof.
+case/subnormalP => s Hs <-{K}; apply/subnormalP.
+elim: s H Hs => [|K s IHs] H /=; first by exists [::].
+case/andP=> nsHK /IHs[fs Hfs <-].
+by exists ([group of f @* K] :: fs); rewrite /= ?morphim_normal.
+Qed.
+
+Lemma quotient_subnormal H G K : G <|<| K -> G / H <|<| K / H.
+Proof. exact: morphim_subnormal. Qed.
+
+End MorphSubNormal.
+
+Section MaxProps.
+
+Variable gT : finGroupType.
+Implicit Types G H M : {group gT}.
+
+Lemma maximal_eqP M G :
+ reflect (M \subset G /\
+ forall H, M \subset H -> H \subset G -> H :=: M \/ H :=: G)
+ (maximal_eq M G).
+Proof.
+rewrite subEproper /maximal_eq; case: eqP => [->|_]; first left.
+ by split=> // H sGH sHG; right; apply/eqP; rewrite eqEsubset sHG.
+apply: (iffP maxgroupP) => [] [sMG maxM]; split=> // H.
+ by move/maxM=> maxMH; rewrite subEproper; case/predU1P; auto.
+by rewrite properEneq => /andP[/eqP neHG sHG] /maxM[].
+Qed.
+
+Lemma maximal_exists H G :
+ H \subset G ->
+ H :=: G \/ (exists2 M : {group gT}, maximal M G & H \subset M).
+Proof.
+rewrite subEproper; case/predU1P=> sHG; first by left.
+suff [M *]: {M : {group gT} | maximal M G & H \subset M} by right; exists M.
+exact: maxgroup_exists.
+Qed.
+
+Lemma mulg_normal_maximal G M H :
+ M <| G -> maximal M G -> H \subset G -> ~~ (H \subset M) -> (M * H = G)%g.
+Proof.
+case/andP=> sMG nMG /maxgroupP[_ maxM] sHG not_sHM.
+apply/eqP; rewrite eqEproper mul_subG // -norm_joinEr ?(subset_trans sHG) //.
+by apply: contra not_sHM => /maxM <-; rewrite ?joing_subl ?joing_subr.
+Qed.
+
+End MaxProps.
+
+Section MinProps.
+
+Variable gT : finGroupType.
+Implicit Types G H M : {group gT}.
+
+Lemma minnormal_exists G H : H :!=: 1 -> G \subset 'N(H) ->
+ {M : {group gT} | minnormal M G & M \subset H}.
+Proof. by move=> ntH nHG; apply: mingroup_exists (H) _; rewrite ntH. Qed.
+
+End MinProps.
+
+Section MorphPreMax.
+
+Variables (gT rT : finGroupType) (D : {group gT}) (f : {morphism D >-> rT}).
+Variables (M G : {group rT}).
+Hypotheses (dM : M \subset f @* D) (dG : G \subset f @* D).
+
+Lemma morphpre_maximal : maximal (f @*^-1 M) (f @*^-1 G) = maximal M G.
+Proof.
+apply/maxgroupP/maxgroupP; rewrite morphpre_proper //= => [] [ltMG maxM].
+ split=> // H ltHG sMH; have dH := subset_trans (proper_sub ltHG) dG.
+ rewrite -(morphpreK dH) [f @*^-1 H]maxM ?morphpreK ?morphpreSK //.
+ by rewrite morphpre_proper.
+split=> // H ltHG sMH.
+have dH: H \subset D := subset_trans (proper_sub ltHG) (subsetIl D _).
+have defH: f @*^-1 (f @* H) = H.
+ by apply: morphimGK dH; apply: subset_trans sMH; exact: ker_sub_pre.
+rewrite -defH morphpre_proper ?morphimS // in ltHG.
+by rewrite -defH [f @* H]maxM // -(morphpreK dM) morphimS.
+Qed.
+
+Lemma morphpre_maximal_eq : maximal_eq (f @*^-1 M) (f @*^-1 G) = maximal_eq M G.
+Proof. by rewrite /maximal_eq morphpre_maximal !eqEsubset !morphpreSK. Qed.
+
+End MorphPreMax.
+
+Section InjmMax.
+
+Variables (gT rT : finGroupType) (D : {group gT}) (f : {morphism D >-> rT}).
+Variables M G L : {group gT}.
+
+Hypothesis injf : 'injm f.
+Hypotheses (dM : M \subset D) (dG : G \subset D) (dL : L \subset D).
+
+Lemma injm_maximal : maximal (f @* M) (f @* G) = maximal M G.
+Proof.
+rewrite -(morphpre_invm injf) -(morphpre_invm injf G).
+by rewrite morphpre_maximal ?morphim_invm.
+Qed.
+
+Lemma injm_maximal_eq : maximal_eq (f @* M) (f @* G) = maximal_eq M G.
+Proof. by rewrite /maximal_eq injm_maximal // injm_eq. Qed.
+
+Lemma injm_maxnormal : maxnormal (f @* M) (f @* G) (f @* L) = maxnormal M G L.
+Proof.
+pose injfm := (injm_proper injf, injm_norms, injmSK injf, subsetIl).
+apply/maxgroupP/maxgroupP; rewrite !injfm // => [[nML maxM]].
+ split=> // H nHL sMH; have [/proper_sub sHG _] := andP nHL.
+ have dH := subset_trans sHG dG; apply: (injm_morphim_inj injf) => //.
+ by apply: maxM; rewrite !injfm.
+split=> // fH nHL sMH; have [/proper_sub sfHG _] := andP nHL.
+have{sfHG} dfH: fH \subset f @* D := subset_trans sfHG (morphim_sub f G).
+by rewrite -(morphpreK dfH) !injfm // in nHL sMH *; rewrite (maxM _ nHL).
+Qed.
+
+Lemma injm_minnormal : minnormal (f @* M) (f @* G) = minnormal M G.
+Proof.
+pose injfm := (morphim_injm_eq1 injf, injm_norms, injmSK injf, subsetIl).
+apply/mingroupP/mingroupP; rewrite !injfm // => [[nML minM]].
+ split=> // H nHG sHM; have dH := subset_trans sHM dM.
+ by apply: (injm_morphim_inj injf) => //; apply: minM; rewrite !injfm.
+split=> // fH nHG sHM; have dfH := subset_trans sHM (morphim_sub f M).
+by rewrite -(morphpreK dfH) !injfm // in nHG sHM *; rewrite (minM _ nHG).
+Qed.
+
+End InjmMax.
+
+Section QuoMax.
+
+Variables (gT : finGroupType) (K G H : {group gT}).
+
+Lemma cosetpre_maximal (Q R : {group coset_of K}) :
+ maximal (coset K @*^-1 Q) (coset K @*^-1 R) = maximal Q R.
+Proof. by rewrite morphpre_maximal ?sub_im_coset. Qed.
+
+Lemma cosetpre_maximal_eq (Q R : {group coset_of K}) :
+ maximal_eq (coset K @*^-1 Q) (coset K @*^-1 R) = maximal_eq Q R.
+Proof. by rewrite /maximal_eq !eqEsubset !cosetpreSK cosetpre_maximal. Qed.
+
+Lemma quotient_maximal :
+ K <| G -> K <| H -> maximal (G / K) (H / K) = maximal G H.
+Proof. by move=> nKG nKH; rewrite -cosetpre_maximal ?quotientGK. Qed.
+
+Lemma quotient_maximal_eq :
+ K <| G -> K <| H -> maximal_eq (G / K) (H / K) = maximal_eq G H.
+Proof. by move=> nKG nKH; rewrite -cosetpre_maximal_eq ?quotientGK. Qed.
+
+Lemma maximalJ x : maximal (G :^ x) (H :^ x) = maximal G H.
+Proof.
+rewrite -{1}(setTI G) -{1}(setTI H) -!morphim_conj.
+by rewrite injm_maximal ?subsetT ?injm_conj.
+Qed.
+
+Lemma maximal_eqJ x : maximal_eq (G :^ x) (H :^ x) = maximal_eq G H.
+Proof. by rewrite /maximal_eq !eqEsubset !conjSg maximalJ. Qed.
+
+End QuoMax.
+
+Section MaxNormalProps.
+
+Variables (gT : finGroupType).
+Implicit Types (A B C : {set gT}) (G H K L M : {group gT}).
+
+Lemma maxnormal_normal A B : maxnormal A B B -> A <| B.
+Proof.
+by case/maxsetP=> /and3P[/gen_set_id /= -> pAB nAB]; rewrite /normal proper_sub.
+Qed.
+
+Lemma maxnormal_proper A B C : maxnormal A B C -> A \proper B.
+Proof.
+by case/maxsetP=> /and3P[gA pAB _] _; exact: (sub_proper_trans (subset_gen A)).
+Qed.
+
+Lemma maxnormal_sub A B C : maxnormal A B C -> A \subset B.
+Proof.
+by move=> maxA; rewrite proper_sub //; exact: (maxnormal_proper maxA).
+Qed.
+
+Lemma ex_maxnormal_ntrivg G : G :!=: 1-> {N : {group gT} | maxnormal N G G}.
+Proof.
+move=> ntG; apply: ex_maxgroup; exists [1 gT]%G; rewrite norm1 proper1G.
+by rewrite subsetT ntG.
+Qed.
+
+Lemma maxnormalM G H K :
+ maxnormal H G G -> maxnormal K G G -> H :<>: K -> H * K = G.
+Proof.
+move=> maxH maxK /eqP; apply: contraNeq => ltHK_G.
+have [nsHG nsKG] := (maxnormal_normal maxH, maxnormal_normal maxK).
+have cHK: commute H K.
+ exact: normC (subset_trans (normal_sub nsHG) (normal_norm nsKG)).
+wlog suffices: H K {maxH} maxK nsHG nsKG cHK ltHK_G / H \subset K.
+ by move=> IH; rewrite eqEsubset !IH // -cHK.
+have{maxK} /maxgroupP[_ maxK] := maxK.
+apply/joing_idPr/maxK; rewrite ?joing_subr //= comm_joingE //.
+by rewrite properEneq ltHK_G; exact: normalM.
+Qed.
+
+Lemma maxnormal_minnormal G L M :
+ G \subset 'N(M) -> L \subset 'N(G) -> maxnormal M G L ->
+ minnormal (G / M) (L / M).
+Proof.
+move=> nMG nGL /maxgroupP[/andP[/andP[sMG ltMG] nML] maxM]; apply/mingroupP.
+rewrite -subG1 quotient_sub1 ?ltMG ?quotient_norms //.
+split=> // Hb /andP[ntHb nHbL]; have nsMG: M <| G by exact/andP.
+case/inv_quotientS=> // H defHb sMH sHG; rewrite defHb; congr (_ / M).
+apply/eqP; rewrite eqEproper sHG /=; apply: contra ntHb => ltHG.
+have nsMH: M <| H := normalS sMH sHG nsMG.
+rewrite defHb quotientS1 // (maxM H) // ltHG /= -(quotientGK nsMH) -defHb.
+exact: norm_quotient_pre.
+Qed.
+
+Lemma minnormal_maxnormal G L M :
+ M <| G -> L \subset 'N(M) -> minnormal (G / M) (L / M) -> maxnormal M G L.
+Proof.
+case/andP=> sMG nMG nML /mingroupP[/andP[/= ntGM _] minGM]; apply/maxgroupP.
+split=> [|H /andP[/andP[sHG ltHG] nHL] sMH].
+ by rewrite /proper sMG nML andbT; apply: contra ntGM => /quotientS1 ->.
+apply/eqP; rewrite eqEsubset sMH andbT -quotient_sub1 ?(subset_trans sHG) //.
+rewrite subG1; apply: contraR ltHG => ntHM; rewrite -(quotientSGK nMG) //.
+by rewrite (minGM (H / M)%G) ?quotientS // ntHM quotient_norms.
+Qed.
+
+End MaxNormalProps.
+
+Section Simple.
+
+Implicit Types gT rT : finGroupType.
+
+Lemma simpleP gT (G : {group gT}) :
+ reflect (G :!=: 1 /\ forall H : {group gT}, H <| G -> H :=: 1 \/ H :=: G)
+ (simple G).
+Proof.
+apply: (iffP mingroupP); rewrite normG andbT => [[ntG simG]].
+ split=> // N /andP[sNG nNG].
+ by case: (eqsVneq N 1) => [|ntN]; [left | right; apply: simG; rewrite ?ntN].
+split=> // N /andP[ntN nNG] sNG.
+by case: (simG N) ntN => // [|->]; [exact/andP | case/eqP].
+Qed.
+
+Lemma quotient_simple gT (G H : {group gT}) :
+ H <| G -> simple (G / H) = maxnormal H G G.
+Proof.
+move=> nsHG; have nGH := normal_norm nsHG.
+by apply/idP/idP; [exact: minnormal_maxnormal | exact: maxnormal_minnormal].
+Qed.
+
+Lemma isog_simple gT rT (G : {group gT}) (M : {group rT}) :
+ G \isog M -> simple G = simple M.
+Proof.
+move=> eqGM; wlog suffices: gT rT G M eqGM / simple M -> simple G.
+ by move=> IH; apply/idP/idP; apply: IH; rewrite // isog_sym.
+case/isogP: eqGM => f injf <- /simpleP[ntGf simGf].
+apply/simpleP; split=> [|N nsNG]; first by rewrite -(morphim_injm_eq1 injf).
+rewrite -(morphim_invm injf (normal_sub nsNG)).
+have: f @* N <| f @* G by rewrite morphim_normal.
+by case/simGf=> /= ->; [left | right]; rewrite (morphim1, morphim_invm).
+Qed.
+
+Lemma simple_maxnormal gT (G : {group gT}) : simple G = maxnormal 1 G G.
+Proof.
+by rewrite -quotient_simple ?normal1 // -(isog_simple (quotient1_isog G)).
+Qed.
+
+End Simple.
+
+Section Chiefs.
+
+Variable gT : finGroupType.
+Implicit Types G H U V : {group gT}.
+
+Lemma chief_factor_minnormal G V U :
+ chief_factor G V U -> minnormal (U / V) (G / V).
+Proof.
+case/andP=> maxV /andP[sUG nUG]; apply: maxnormal_minnormal => //.
+by have /andP[_ nVG] := maxgroupp maxV; exact: subset_trans sUG nVG.
+Qed.
+
+Lemma acts_irrQ G U V :
+ G \subset 'N(V) -> V <| U ->
+ acts_irreducibly G (U / V) 'Q = minnormal (U / V) (G / V).
+Proof.
+move=> nVG nsVU; apply/mingroupP/mingroupP; case=> /andP[->] /=.
+ rewrite astabsQ // subsetI nVG /= => nUG minUV.
+ rewrite quotient_norms //; split=> // H /andP[ntH nHG] sHU.
+ by apply: minUV (sHU); rewrite ntH -(cosetpreK H) actsQ // norm_quotient_pre.
+rewrite sub_quotient_pre // => nUG minU; rewrite astabsQ //.
+rewrite (subset_trans nUG); last first.
+ by rewrite subsetI subsetIl /= -{2}(quotientGK nsVU) morphpre_norm.
+split=> // H /andP[ntH nHG] sHU.
+rewrite -{1}(cosetpreK H) astabsQ ?normal_cosetpre ?subsetI ?nVG //= in nHG.
+apply: minU sHU; rewrite ntH; apply: subset_trans (quotientS _ nHG) _.
+by rewrite -{2}(cosetpreK H) quotient_norm.
+Qed.
+
+Lemma chief_series_exists H G :
+ H <| G -> {s | (G.-chief).-series 1%G s & last 1%G s = H}.
+Proof.
+elim: {H}_.+1 {-2}H (ltnSn #|H|) => // m IHm U leUm nsUG.
+have [-> | ntU] := eqVneq U 1%G; first by exists [::].
+have [V maxV]: {V : {group gT} | maxnormal V U G}.
+ by apply: ex_maxgroup; exists 1%G; rewrite proper1G ntU norms1.
+have /andP[ltVU nVG] := maxgroupp maxV.
+have [||s ch_s defV] := IHm V; first exact: leq_trans (proper_card ltVU) _.
+ by rewrite /normal (subset_trans (proper_sub ltVU) (normal_sub nsUG)).
+exists (rcons s U); last by rewrite last_rcons.
+by rewrite rcons_path defV /= ch_s /chief_factor; exact/and3P.
+Qed.
+
+End Chiefs.
+
+Section Central.
+
+Variables (gT : finGroupType) (G : {group gT}).
+Implicit Types H K : {group gT}.
+
+Lemma central_factor_central H K :
+ central_factor G H K -> (K / H) \subset 'Z(G / H).
+Proof. by case/and3P=> /quotient_cents2r *; rewrite subsetI quotientS. Qed.
+
+
+Lemma central_central_factor H K :
+ (K / H) \subset 'Z(G / H) -> H <| K -> H <| G -> central_factor G H K.
+Proof.
+case/subsetIP=> sKGb cGKb /andP[sHK nHK] /andP[sHG nHG].
+by rewrite /central_factor -quotient_cents2 // cGKb sHK -(quotientSGK nHK).
+Qed.
+
+End Central.