aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/solvable/finmodule.v
diff options
context:
space:
mode:
authorCyril Cohen2017-11-23 16:33:36 +0100
committerCyril Cohen2018-02-06 13:54:37 +0100
commitfafd4dac5315e1d4e071b0044a50a16360b31964 (patch)
tree5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/solvable/finmodule.v
parent835467324db450c8fb8971e477cc4d82fa3e861b (diff)
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/solvable/finmodule.v')
-rw-r--r--mathcomp/solvable/finmodule.v18
1 files changed, 9 insertions, 9 deletions
diff --git a/mathcomp/solvable/finmodule.v b/mathcomp/solvable/finmodule.v
index 97b2ebc..5a2b35b 100644
--- a/mathcomp/solvable/finmodule.v
+++ b/mathcomp/solvable/finmodule.v
@@ -140,13 +140,13 @@ Canonical fmod_morphism := Morphism fmodM.
Lemma fmodX n : {in A, {morph fmod : x / (x ^+ n)%g >-> x *+ n}}.
Proof. exact: morphX. Qed.
Lemma fmodV : {morph fmod : x / x^-1%g >-> - x}.
-Proof.
+Proof.
move=> x; apply: val_inj; rewrite fmvalN !fmodKcond groupV.
by case: (x \in A); rewrite ?invg1.
Qed.
Lemma injm_fmod : 'injm fmod.
-Proof.
+Proof.
by apply/injmP=> x y Ax Ay []; move/val_inj; apply: (injmP (injm_subg A)).
Qed.
@@ -212,13 +212,13 @@ Proof.
by move=> x y Nx Ny /= u; apply: val_inj; rewrite !fmvalJ ?conjgM ?groupM.
Qed.
-Lemma actrK x : cancel (actr^~ x) (actr^~ x^-1%g).
+Lemma actrK x : cancel (actr^~ x) (actr^~ x^-1%g).
Proof.
move=> u; apply: val_inj; rewrite !fmvalJcond groupV.
by case: ifP => -> //; rewrite conjgK.
Qed.
-Lemma actrKV x : cancel (actr^~ x^-1%g) (actr^~ x).
+Lemma actrKV x : cancel (actr^~ x^-1%g) (actr^~ x).
Proof. by move=> u; rewrite /= -{2}(invgK x) actrK. Qed.
End OneFinMod.
@@ -330,7 +330,7 @@ have{cocycle_nu} fM: {in G &, {morph f : x y / x * y}}.
move=> x y Gx Gy; rewrite /f ?rHmul // -3!mulgA; congr (_ * _).
rewrite (mulgA _ (rH y)) (conjgC _ (rH y)) -mulgA; congr (_ * _).
rewrite -fmvalJ ?actrH ?nHG ?GrH // -!fmvalA actZr -mulrnDl.
- rewrite -(addrC (nu y)) cocycle_nu // mulrnDl !fmvalA; congr (_ * _).
+ rewrite -(addrC (nu y)) cocycle_nu // mulrnDl !fmvalA; congr (_ * _).
by rewrite !fmvalZ expgK ?fmodP.
exists (Morphism fM @* G)%G; apply/complP; split.
apply/trivgP/subsetP=> x /setIP[Hx /morphimP[y _ Gy eq_x]].
@@ -479,7 +479,7 @@ Lemma mulg_exp_card_rcosets x : x * (g ^+ n_ x) \in H :* x.
Proof.
rewrite /n_ /indexg -orbitRs -pcycle_actperm ?inE //.
rewrite -{2}(iter_pcycle (actperm 'Rs g) (H :* x)) -permX -morphX ?inE //.
-by rewrite actpermE //= rcosetE -rcosetM rcoset_refl.
+by rewrite actpermE //= rcosetE -rcosetM rcoset_refl.
Qed.
Let HGg : {set {set {set gT}}} := orbit 'Rs <[g]> @: HG.
@@ -545,9 +545,9 @@ have pcyc_eq x: pcyc x =i traj x by apply: pcycle_traject.
have uniq_traj x: uniq (traj x) by apply: uniq_traject_pcycle.
have n_eq x: n_ x = #|pcyc x| by rewrite -Hgr_eq.
have size_traj x: size (traj x) = n_ x by rewrite n_eq size_traject.
-have nth_traj x j: j < n_ x -> nth (H :* x) (traj x) j = H :* (x * g ^+ j).
+have nth_traj x j: j < n_ x -> nth (H :* x) (traj x) j = H :* (x * g ^+ j).
move=> lt_j_x; rewrite nth_traject -?n_eq //.
- by rewrite -permX -morphX ?inE // actpermE //= rcosetE rcosetM.
+ by rewrite -permX -morphX ?inE // actpermE //= rcosetE rcosetM.
have sYG: Y \subset G.
apply/bigcupsP=> x Xx; apply/subsetP=> _ /imsetP[i _ ->].
by rewrite groupM ?groupX // sXG.
@@ -586,7 +586,7 @@ rewrite /traj -n_eq; case def_n: (n_ x) (n_gt0) => // [n] _.
rewrite conjgE invgK -{1}[H :* x]rcoset1 -{1}(expg0 g).
elim: {1 3}n 0%N (addn0 n) => [|m IHm] i def_i /=.
rewrite big_seq1 {i}[i]def_i rYE // ?def_n //.
- rewrite -(mulgA _ _ g) -rcosetM -expgSr -[(H :* x) :* _]rcosetE.
+ rewrite -(mulgA _ _ g) -rcosetM -expgSr -[(H :* x) :* _]rcosetE.
rewrite -actpermE morphX ?inE // permX // -{2}def_n n_eq iter_pcycle mulgA.
by rewrite -[H :* x]rcoset1 (rYE _ 0%N) ?mulg1.
rewrite big_cons rYE //; last by rewrite def_n -def_i ltnS leq_addl.