diff options
| author | Cyril Cohen | 2017-11-23 16:33:36 +0100 |
|---|---|---|
| committer | Cyril Cohen | 2018-02-06 13:54:37 +0100 |
| commit | fafd4dac5315e1d4e071b0044a50a16360b31964 (patch) | |
| tree | 5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/solvable/finmodule.v | |
| parent | 835467324db450c8fb8971e477cc4d82fa3e861b (diff) | |
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/solvable/finmodule.v')
| -rw-r--r-- | mathcomp/solvable/finmodule.v | 18 |
1 files changed, 9 insertions, 9 deletions
diff --git a/mathcomp/solvable/finmodule.v b/mathcomp/solvable/finmodule.v index 97b2ebc..5a2b35b 100644 --- a/mathcomp/solvable/finmodule.v +++ b/mathcomp/solvable/finmodule.v @@ -140,13 +140,13 @@ Canonical fmod_morphism := Morphism fmodM. Lemma fmodX n : {in A, {morph fmod : x / (x ^+ n)%g >-> x *+ n}}. Proof. exact: morphX. Qed. Lemma fmodV : {morph fmod : x / x^-1%g >-> - x}. -Proof. +Proof. move=> x; apply: val_inj; rewrite fmvalN !fmodKcond groupV. by case: (x \in A); rewrite ?invg1. Qed. Lemma injm_fmod : 'injm fmod. -Proof. +Proof. by apply/injmP=> x y Ax Ay []; move/val_inj; apply: (injmP (injm_subg A)). Qed. @@ -212,13 +212,13 @@ Proof. by move=> x y Nx Ny /= u; apply: val_inj; rewrite !fmvalJ ?conjgM ?groupM. Qed. -Lemma actrK x : cancel (actr^~ x) (actr^~ x^-1%g). +Lemma actrK x : cancel (actr^~ x) (actr^~ x^-1%g). Proof. move=> u; apply: val_inj; rewrite !fmvalJcond groupV. by case: ifP => -> //; rewrite conjgK. Qed. -Lemma actrKV x : cancel (actr^~ x^-1%g) (actr^~ x). +Lemma actrKV x : cancel (actr^~ x^-1%g) (actr^~ x). Proof. by move=> u; rewrite /= -{2}(invgK x) actrK. Qed. End OneFinMod. @@ -330,7 +330,7 @@ have{cocycle_nu} fM: {in G &, {morph f : x y / x * y}}. move=> x y Gx Gy; rewrite /f ?rHmul // -3!mulgA; congr (_ * _). rewrite (mulgA _ (rH y)) (conjgC _ (rH y)) -mulgA; congr (_ * _). rewrite -fmvalJ ?actrH ?nHG ?GrH // -!fmvalA actZr -mulrnDl. - rewrite -(addrC (nu y)) cocycle_nu // mulrnDl !fmvalA; congr (_ * _). + rewrite -(addrC (nu y)) cocycle_nu // mulrnDl !fmvalA; congr (_ * _). by rewrite !fmvalZ expgK ?fmodP. exists (Morphism fM @* G)%G; apply/complP; split. apply/trivgP/subsetP=> x /setIP[Hx /morphimP[y _ Gy eq_x]]. @@ -479,7 +479,7 @@ Lemma mulg_exp_card_rcosets x : x * (g ^+ n_ x) \in H :* x. Proof. rewrite /n_ /indexg -orbitRs -pcycle_actperm ?inE //. rewrite -{2}(iter_pcycle (actperm 'Rs g) (H :* x)) -permX -morphX ?inE //. -by rewrite actpermE //= rcosetE -rcosetM rcoset_refl. +by rewrite actpermE //= rcosetE -rcosetM rcoset_refl. Qed. Let HGg : {set {set {set gT}}} := orbit 'Rs <[g]> @: HG. @@ -545,9 +545,9 @@ have pcyc_eq x: pcyc x =i traj x by apply: pcycle_traject. have uniq_traj x: uniq (traj x) by apply: uniq_traject_pcycle. have n_eq x: n_ x = #|pcyc x| by rewrite -Hgr_eq. have size_traj x: size (traj x) = n_ x by rewrite n_eq size_traject. -have nth_traj x j: j < n_ x -> nth (H :* x) (traj x) j = H :* (x * g ^+ j). +have nth_traj x j: j < n_ x -> nth (H :* x) (traj x) j = H :* (x * g ^+ j). move=> lt_j_x; rewrite nth_traject -?n_eq //. - by rewrite -permX -morphX ?inE // actpermE //= rcosetE rcosetM. + by rewrite -permX -morphX ?inE // actpermE //= rcosetE rcosetM. have sYG: Y \subset G. apply/bigcupsP=> x Xx; apply/subsetP=> _ /imsetP[i _ ->]. by rewrite groupM ?groupX // sXG. @@ -586,7 +586,7 @@ rewrite /traj -n_eq; case def_n: (n_ x) (n_gt0) => // [n] _. rewrite conjgE invgK -{1}[H :* x]rcoset1 -{1}(expg0 g). elim: {1 3}n 0%N (addn0 n) => [|m IHm] i def_i /=. rewrite big_seq1 {i}[i]def_i rYE // ?def_n //. - rewrite -(mulgA _ _ g) -rcosetM -expgSr -[(H :* x) :* _]rcosetE. + rewrite -(mulgA _ _ g) -rcosetM -expgSr -[(H :* x) :* _]rcosetE. rewrite -actpermE morphX ?inE // permX // -{2}def_n n_eq iter_pcycle mulgA. by rewrite -[H :* x]rcoset1 (rYE _ 0%N) ?mulg1. rewrite big_cons rYE //; last by rewrite def_n -def_i ltnS leq_addl. |
