diff options
| author | Anton Trunov | 2019-05-29 15:17:39 +0300 |
|---|---|---|
| committer | Anton Trunov | 2019-05-29 15:17:39 +0300 |
| commit | 42db44ce8df9f24d90c321d57e81e2d5bf83bd48 (patch) | |
| tree | c928479b8231901da1cfb4efece42ebe2d419da7 /mathcomp/solvable/burnside_app.v | |
| parent | 1aa27b589c437b88cc6fb556edfceac42da449ea (diff) | |
Replace eqVneq with eqPsym
Also changed eqsVneq.
Diffstat (limited to 'mathcomp/solvable/burnside_app.v')
| -rw-r--r-- | mathcomp/solvable/burnside_app.v | 42 |
1 files changed, 21 insertions, 21 deletions
diff --git a/mathcomp/solvable/burnside_app.v b/mathcomp/solvable/burnside_app.v index 4e84bb5..18c6509 100644 --- a/mathcomp/solvable/burnside_app.v +++ b/mathcomp/solvable/burnside_app.v @@ -371,7 +371,7 @@ Lemma F_r3 : 'Fix_to[r3] = Proof. apply/setP=> x; rewrite (sameP afix1P eqP) !inE eqperm_map /=. rewrite /act_f r3_inv !ffunE !permE /=. -by do 3![case: eqPsym=> // <-]. +by do 3![case: eqVneq=> // <-]. Qed. Lemma card_n2 : forall x y z t : square, uniq [:: x; y; z; t] -> @@ -950,7 +950,7 @@ Proof. apply sym_equal. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r05_inv !ffunE !permE /=. rewrite !eqxx /= !andbT /col1/col2/col3/col4/col5/col0. -by do 3![case: eqPsym; rewrite ?andbF // => <-]. +by do 3![case: eqVneq; rewrite ?andbF // => <-]. Qed. Lemma F_r50 : 'Fix_to_g[r50]= @@ -959,7 +959,7 @@ Lemma F_r50 : 'Fix_to_g[r50]= Proof. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r50_inv !ffunE !permE /=. apply sym_equal; rewrite !eqxx /= !andbT /col1/col2/col3/col4. -by do 3![case: eqPsym; rewrite ?andbF // => <-]. +by do 3![case: eqVneq; rewrite ?andbF // => <-]. Qed. Lemma F_r23 : 'Fix_to_g[r23] = @@ -969,7 +969,7 @@ Proof. have r23_inv: r23^-1 = r32 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r23_inv !ffunE !permE /=. apply sym_equal; rewrite !eqxx /= !andbT /col1/col0/col5/col4. -by do 3![case: eqPsym; rewrite ?andbF // => <-]. +by do 3![case: eqVneq; rewrite ?andbF // => <-]. Qed. Lemma F_r32 : 'Fix_to_g[r32] = @@ -979,7 +979,7 @@ Proof. have r32_inv: r32^-1 = r23 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r32_inv !ffunE !permE /=. apply sym_equal; rewrite !eqxx /= !andbT /col1/col0/col5/col4. -by do 3![case: eqPsym; rewrite ?andbF // => <-]. +by do 3![case: eqVneq; rewrite ?andbF // => <-]. Qed. Lemma F_r14 : 'Fix_to_g[r14] = @@ -987,7 +987,7 @@ Lemma F_r14 : 'Fix_to_g[r14] = Proof. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r14_inv !ffunE !permE /=. apply sym_equal; rewrite !eqxx /= !andbT /col2/col0/col5/col3. -by do 3![case: eqPsym; rewrite ?andbF // => <-]. +by do 3![case: eqVneq; rewrite ?andbF // => <-]. Qed. Lemma F_r41 : 'Fix_to_g[r41] = @@ -995,7 +995,7 @@ Lemma F_r41 : 'Fix_to_g[r41] = Proof. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r41_inv !ffunE !permE /=. apply sym_equal; rewrite !eqxx /= !andbT /col2/col0/col5/col3. -by do 3![case: eqPsym; rewrite ?andbF // => <-]. +by do 3![case: eqVneq; rewrite ?andbF // => <-]. Qed. Lemma F_r024 : 'Fix_to_g[r024] = @@ -1005,7 +1005,7 @@ Proof. have r024_inv: r024^-1 = r042 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r024_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. -by do 4![case: eqPsym=> E; rewrite ?andbF // ?{}E]. +by do 4![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_r042 : 'Fix_to_g[r042] = @@ -1015,7 +1015,7 @@ Proof. have r042_inv: r042^-1 = r024 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r042_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. -by do 4![case: eqPsym=> E; rewrite ?andbF // ?{}E]. +by do 4![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_r012 : 'Fix_to_g[r012] = @@ -1025,7 +1025,7 @@ Proof. have r012_inv: r012^-1 = r021 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r012_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. -by do 4![case: eqPsym=> E; rewrite ?andbF // ?{}E]. +by do 4![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_r021 : 'Fix_to_g[r021] = @@ -1035,7 +1035,7 @@ Proof. have r021_inv: r021^-1 = r012 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r021_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. -do 4![case: eqPsym=> E; rewrite ?andbF // ?{}E]. +do 4![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_r031 : 'Fix_to_g[r031] = @@ -1045,7 +1045,7 @@ Proof. have r031_inv: r031^-1 = r013 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r031_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. -by do 4![case: eqPsym=> E; rewrite ?andbF // ?{}E]. +by do 4![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_r013 : 'Fix_to_g[r013] = @@ -1055,7 +1055,7 @@ Proof. have r013_inv: r013^-1 = r031 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r013_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. -by do 4![case: eqPsym=> E; rewrite ?andbF // ?{}E]. +by do 4![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_r043 : 'Fix_to_g[r043] = @@ -1065,7 +1065,7 @@ Proof. have r043_inv: r043^-1 = r034 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r043_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. -by do 4![case: eqPsym=> E; rewrite ?andbF // ?{}E]. +by do 4![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_r034 : 'Fix_to_g[r034] = @@ -1075,7 +1075,7 @@ Proof. have r034_inv: r034^-1 = r043 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g r034_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. -by do 4![case: eqPsym=> E; rewrite ?andbF // ?{}E]. +by do 4![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_s1 : 'Fix_to_g[s1] = @@ -1084,7 +1084,7 @@ Proof. have s1_inv: s1^-1 = s1 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g s1_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. -by do 3![case: eqPsym=> E; rewrite ?andbF // ?{}E]. +by do 3![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_s2 : 'Fix_to_g[s2] = @@ -1093,7 +1093,7 @@ Proof. have s2_inv: s2^-1 = s2 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g s2_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. -by do 3![case: eqPsym=> E; rewrite ?andbF // ?{}E]. +by do 3![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_s3 : 'Fix_to_g[s3] = @@ -1102,7 +1102,7 @@ Proof. have s3_inv: s3^-1 = s3 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g s3_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. -by do 3![case: eqPsym=> E; rewrite ?andbF // ?{}E]. +by do 3![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_s4 : 'Fix_to_g[s4] = @@ -1111,7 +1111,7 @@ Proof. have s4_inv: s4^-1 = s4 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g s4_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. -by do 3![case: eqPsym=> E; rewrite ?andbF // ?{}E]. +by do 3![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_s5 : 'Fix_to_g[s5] = @@ -1120,7 +1120,7 @@ Proof. have s5_inv: s5^-1 = s5 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g s5_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. -by do 3![case: eqPsym=> E; rewrite ?andbF // ?{}E]. +by do 3![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma F_s6 : 'Fix_to_g[s6] = @@ -1129,7 +1129,7 @@ Proof. have s6_inv: s6^-1 = s6 by inv_tac. apply/setP => x; rewrite infE !inE eqperm_map2 /= /act_g s6_inv !ffunE !permE /=. apply sym_equal; rewrite ?eqxx /= !andbT /col0/col1/col2/col3/col4/col5. -by do 3![case: eqPsym=> E; rewrite ?andbF // ?{}E]. +by do 3![case: eqVneq=> E; rewrite ?andbF // ?{}E]. Qed. Lemma uniq4_uniq6 : forall x y z t : cube, |
