diff options
| author | Enrico Tassi | 2015-03-09 11:07:53 +0100 |
|---|---|---|
| committer | Enrico Tassi | 2015-03-09 11:24:38 +0100 |
| commit | fc84c27eac260dffd8f2fb1cb56d599f1e3486d9 (patch) | |
| tree | c16205f1637c80833a4c4598993c29fa0fd8c373 /mathcomp/real_closed/polyrcf.v | |
Initial commit
Diffstat (limited to 'mathcomp/real_closed/polyrcf.v')
| -rw-r--r-- | mathcomp/real_closed/polyrcf.v | 1857 |
1 files changed, 1857 insertions, 0 deletions
diff --git a/mathcomp/real_closed/polyrcf.v b/mathcomp/real_closed/polyrcf.v new file mode 100644 index 0000000..b49e729 --- /dev/null +++ b/mathcomp/real_closed/polyrcf.v @@ -0,0 +1,1857 @@ +(* (c) Copyright Microsoft Corporation and Inria. All rights reserved. *) +Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice fintype. +Require Import bigop ssralg poly polydiv ssrnum zmodp. +Require Import polyorder path interval ssrint. + +(****************************************************************************) +(* This files contains basic (and unformatted) theory for polynomials *) +(* over a realclosed fields. From the IVT (contained in the rcfType *) +(* structure), we derive Rolle's Theorem, the Mean Value Theorem, a root *) +(* isolation procedure and the notion of neighborhood. *) +(* *) +(* sgp_minfty p == the sign of p in -oo *) +(* sgp_pinfty p == the sign of p in +oo *) +(* cauchy_bound p == the cauchy bound of p *) +(* (this strictly bounds the norm of roots of p) *) +(* roots p a b == the ordered list of roots of p in `[a, b] *) +(* defaults to [::] when p == 0 *) +(* rootsR p == the ordered list of all roots of p, ([::] if p == 0). *) +(* next_root p x b == the smallest root of p contained in `[x, maxn x b] *) +(* if p has no root on `[x, maxn x b], we pick maxn x b. *) +(* prev_root p x a == the smallest root of p contained in `[minn x a, x] *) +(* if p has no root on `[minn x a, x], we pick minn x a. *) +(* neighpr p a b := `]a, next_root p a b[. *) +(* == an open interval of the form `]a, x[, with x <= b *) +(* in which p has no root. *) +(* neighpl p a b := `]prev_root p a b, b[. *) +(* == an open interval of the form `]x, b[, with a <= x *) +(* in which p has no root. *) +(* sgp_right p a == the sign of p on the right of a. *) +(****************************************************************************) + + +Import GRing.Theory Num.Theory Num.Def. +Import Pdiv.Idomain. + +Set Implicit Arguments. +Unset Strict Implicit. +Unset Printing Implicit Defensive. + +Local Open Scope nat_scope. +Local Open Scope ring_scope. + +Local Notation noroot p := (forall x, ~~ root p x). +Local Notation mid x y := ((x + y) / 2%:R). + +Section more. +Section SeqR. + +Lemma last1_neq0 : forall (R : ringType) (s: seq R) (c:R), c != 0 -> + (last c s != 0) = (last 1 s != 0). +Proof. by move=> R'; elim=> [|t s ihs] c cn0 //; rewrite oner_eq0 cn0. Qed. + +End SeqR. + +Section poly. +Import Pdiv.Ring Pdiv.ComRing. + +Variable R : idomainType. + +Implicit Types p q : {poly R}. + +Lemma lead_coefDr p q : + (size q > size p)%N -> lead_coef (p + q) = lead_coef q. +Proof. by move/lead_coefDl<-; rewrite addrC. Qed. + +Lemma leq1_size_polyC (c : R) : (size c%:P <= 1)%N. +Proof. by rewrite size_polyC; case: (c == 0). Qed. + +Lemma my_size_exp p n : p != 0 -> + (size (p ^+ n)) = ((size p).-1 * n).+1%N. +Proof. +by move=> hp; rewrite -size_exp prednK // lt0n size_poly_eq0 expf_neq0. +Qed. + +Lemma coef_comp_poly p q n : + (p \Po q)`_n = \sum_(i < size p) p`_i * (q ^+ i)`_n. +Proof. +rewrite comp_polyE coef_sum. +by elim/big_ind2: _ => [//|? ? ? ? -> -> //|i]; rewrite coefZ. +Qed. + +Lemma gt_size_poly p n : (size p > n)%N -> p != 0. +Proof. +by move=> h; rewrite -size_poly_eq0 lt0n_neq0 //; apply: leq_ltn_trans h. +Qed. + +Lemma lead_coef_comp_poly p q : (size q > 1)%N -> + lead_coef (p \Po q) = (lead_coef p) * (lead_coef q) ^+ (size p).-1. +Proof. +move=> sq; rewrite !lead_coefE coef_comp_poly size_comp_poly. +case hp: (size p) => [|n]. + move/eqP: hp; rewrite size_poly_eq0 => /eqP ->. + by rewrite big_ord0 coef0 mul0r. +rewrite big_ord_recr /= big1 => [|i _]. + by rewrite add0r -lead_coefE -lead_coef_exp lead_coefE size_exp mulnC. +rewrite [X in _ * X]nth_default ?mulr0 ?(leq_trans (size_exp_leq _ _)) //. +by rewrite mulnC ltn_mul2r -subn1 subn_gt0 sq /=. +Qed. + +End poly. +End more. + +(******************************************************************) +(* Definitions and properties for polynomials in a numDomainType. *) +(******************************************************************) +Section PolyNumDomain. + +Variable R : numDomainType. +Implicit Types (p q : {poly R}). + +Definition sgp_pinfty (p : {poly R}) := sgr (lead_coef p). +Definition sgp_minfty (p : {poly R}) := + sgr ((-1) ^+ (size p).-1 * (lead_coef p)). + +End PolyNumDomain. + +(******************************************************************) +(* Definitions and properties for polynomials in a realFieldType. *) +(******************************************************************) +Section PolyRealField. + +Variable R : realFieldType. +Implicit Types (p q : {poly R}). + +Section SgpInfty. + +Lemma sgp_pinfty_sym p : sgp_pinfty (p \Po -'X) = sgp_minfty p. +Proof. +rewrite /sgp_pinfty /sgp_minfty lead_coef_comp_poly ?size_opp ?size_polyX //. +by rewrite lead_coef_opp lead_coefX mulrC. +Qed. + +Lemma poly_pinfty_gt_lc p : lead_coef p > 0 -> + exists n, forall x, x >= n -> p.[x] >= lead_coef p. +Proof. +elim/poly_ind: p => [| q c IHq]; first by rewrite lead_coef0 ltrr. +have [->|q_neq0] := eqVneq q 0. + by rewrite mul0r add0r lead_coefC => c_gt0; exists 0 => x _; rewrite hornerC. +rewrite lead_coefDl ?size_mul ?polyX_eq0 // ?lead_coefMX; last first. + rewrite size_polyX addn2 size_polyC /= ltnS. + by rewrite (leq_trans (leq_b1 _)) // size_poly_gt0. +move=> lq_gt0; have [y Hy] := IHq lq_gt0. +pose z := (1 + (lead_coef q) ^-1 * `|c|); exists (maxr y z) => x. +have z_gt0 : 0 < z by rewrite ltr_spaddl ?ltr01 ?mulr_ge0 ?invr_ge0 // ltrW. +rewrite !hornerE ler_maxl => /andP[/Hy Hq Hc]. +rewrite (@ler_trans _ (lead_coef q * z + c)) //; last first. + rewrite ler_add2r (@ler_trans _ (q.[x] * z)) // ?ler_pmul2r //. + by rewrite ler_pmul2l // (ltr_le_trans _ Hq). +rewrite mulrDr mulr1 -addrA ler_addl mulVKf ?gtr_eqF //. +by rewrite -[c]opprK subr_ge0 normrN ler_norm. +Qed. + +(* :REMARK: not necessary here ! *) +Lemma poly_lim_infty p m : lead_coef p > 0 -> (size p > 1)%N -> + exists n, forall x, x >= n -> p.[x] >= m. +Proof. +elim/poly_ind: p m => [| q c _] m; first by rewrite lead_coef0 ltrr. +have [-> _|q_neq0] := eqVneq q 0. + by rewrite mul0r add0r size_polyC ltnNge leq_b1. +rewrite lead_coefDl ?size_mul ?polyX_eq0 // ?lead_coefMX; last first. + rewrite size_polyX addn2 size_polyC /= ltnS. + by rewrite (leq_trans (leq_b1 _)) // size_poly_gt0. +move=> lq_gt0; have [y Hy _] := poly_pinfty_gt_lc lq_gt0. +pose z := (1 + (lead_coef q) ^-1 * (`|m| + `|c|)); exists (maxr y z) => x. +have z_gt0 : 0 < z. + by rewrite ltr_spaddl ?ltr01 ?mulr_ge0 ?invr_ge0 ?addr_ge0 // ?ltrW. +rewrite !hornerE ler_maxl => /andP[/Hy Hq Hc]. +rewrite (@ler_trans _ (lead_coef q * z + c)) //; last first. + rewrite ler_add2r (@ler_trans _ (q.[x] * z)) // ?ler_pmul2r //. + by rewrite ler_pmul2l // (ltr_le_trans _ Hq). +rewrite mulrDr mulr1 mulVKf ?gtr_eqF // addrA -addrA ler_paddr //. + by rewrite -[c]opprK subr_ge0 normrN ler_norm. +by rewrite ler_paddl ?ler_norm // ?ltrW. +Qed. + +End SgpInfty. + +Section CauchyBound. + +Definition cauchy_bound (p : {poly R}) := + 1 + `|lead_coef p|^-1 * \sum_(i < size p) `|p`_i|. + +(* Could be a sharp bound, and proof should shrink... *) +Lemma cauchy_boundP : forall (p : {poly R}) x, + p != 0 -> p.[x] = 0 -> `| x | < cauchy_bound p. +Proof. +move=> p x np0 rpx; rewrite ltr_spaddl ?ltr01 //. +case e: (size p) => [|n]; first by move: np0; rewrite -size_poly_eq0 e eqxx. +have lcp : `|lead_coef p| > 0 by move: np0; rewrite -lead_coef_eq0 -normr_gt0. +have lcn0 : `|lead_coef p| != 0 by rewrite normr_eq0 -normr_gt0. +case: (lerP `|x| 1) => cx1. + rewrite (ler_trans cx1) // /cauchy_bound ler_pdivl_mull // mulr1. + by rewrite big_ord_recr /= /lead_coef e ler_addr sumr_ge0. +case es: n e => [|m] e. + suff p0 : p = 0 by rewrite p0 eqxx in np0. + by move: rpx; rewrite (@size1_polyC _ p) ?e ?lerr // hornerC; move->. +move: rpx; rewrite horner_coef e -es big_ord_recr /=; move/eqP; rewrite eq_sym. +rewrite -subr_eq sub0r; move/eqP => h1. +have {h1} h1 : `|p`_n| * `|x| ^+ n <= \sum_(i < n) `|p`_i * x ^+ i|. + rewrite -normrX -normrM -normrN h1. + by rewrite (ler_trans (ler_norm_sum _ _ _)) // lerr. +have xp : `| x | > 0 by rewrite (ltr_trans _ cx1) ?ltr01. +move: h1; rewrite {-1}es exprS mulrA -ler_pdivl_mulr ?exprn_gt0 // big_distrl /=. +rewrite big_ord_recr /= normrM normrX -mulrA es mulfV; last first. + by rewrite expf_eq0 negb_and eq_sym (ltr_eqF xp) orbT. +have pnp : 0 < `|p`_n| by move: lcp; rewrite /lead_coef e es. +rewrite mulr1 -es mulrC -ler_pdivl_mulr //. +rewrite [_ / _]mulrC /cauchy_bound /lead_coef e -es /=. +move=> h1; apply: (ler_trans h1) => //. +rewrite ler_pmul2l ?invr_gt0 ?(ltrW pnp) // big_ord_recr /=. +rewrite es [_ + `|p`_m.+1|]addrC ler_paddl // ?normr_ge0 //. +rewrite big_ord_recr /= ler_add2r; apply: ler_sum => i. +rewrite normrM normrX. +rewrite -mulrA ler_pimulr ?normrE // ler_pdivr_mulr ?exprn_gt0 // mul1r. +by rewrite ler_eexpn2l // 1?ltrW //; case: i=> i hi /=; rewrite ltnW. +(* this could be improved a little bit with int exponents *) +Qed. + +Lemma le_cauchy_bound p : p != 0 -> {in `]-oo, (- cauchy_bound p)], noroot p}. +Proof. +move=> p_neq0 x; rewrite inE /= lerNgt; apply: contra => /rootP. +by move=> /(cauchy_boundP p_neq0) /ltr_normlP []; rewrite ltr_oppl. +Qed. +Hint Resolve le_cauchy_bound. + +Lemma ge_cauchy_bound p : p != 0 -> {in `[cauchy_bound p, +oo[, noroot p}. +Proof. +move=> p_neq0 x; rewrite inE andbT /= lerNgt; apply: contra => /rootP. +by move=> /(cauchy_boundP p_neq0) /ltr_normlP []; rewrite ltr_oppl. +Qed. +Hint Resolve ge_cauchy_bound. + +Lemma cauchy_bound_gt0 p : cauchy_bound p > 0. +Proof. +rewrite ltr_spaddl ?ltr01 ?mulr_ge0 ?invr_ge0 ?normr_ge0 //. +by rewrite sumr_ge0 // => i; rewrite normr_ge0. +Qed. +Hint Resolve cauchy_bound_gt0. + +Lemma cauchy_bound_ge0 p : cauchy_bound p >= 0. +Proof. by rewrite ltrW. Qed. +Hint Resolve cauchy_bound_ge0. + +End CauchyBound. + +End PolyRealField. + +(************************************************************) +(* Definitions and properties for polynomials in a rcfType. *) +(************************************************************) +Section PolyRCF. + +Variable R : rcfType. + +Section Prelim. + +Implicit Types a b c : R. +Implicit Types x y z t : R. +Implicit Types p q r : {poly R}. + +(* we restate poly_ivt in a nicer way. Perhaps the def of PolyRCF should *) +(* be moved in this file, juste above this section *) + +Lemma poly_ivt (p : {poly R}) (a b : R) : + a <= b -> 0 \in `[p.[a], p.[b]] -> { x : R | x \in `[a, b] & root p x }. +Proof. by move=> leab root_p_ab; exact/sig2W/poly_ivt. Qed. + +Lemma polyrN0_itv (i : interval R) (p : {poly R}) : {in i, noroot p} + -> forall y x : R, y \in i -> x \in i -> sgr p.[x] = sgr p.[y]. +Proof. +move=> hi y x hy hx; wlog xy: x y hx hy / x <= y=> [hwlog|]. + by case/orP: (ler_total x y)=> xy; [|symmetry]; apply: hwlog. +have hxyi: {subset `[x, y] <= i}. + move=> z; apply: subitvP=> /=. + by case: i hx hy {hi}=> [[[] ?|] [[] ?|]] /=; do ?[move/itvP->|move=> ?]. +do 2![case: sgrP; first by move/rootP; rewrite (negPf (hi _ _))]=> //. + move=> /ltrW py0 /ltrW p0x; case: (@poly_ivt (- p) x y)=> //. + by rewrite inE !hornerN !oppr_cp0 p0x. + by move=> z hz; rewrite rootN (negPf (hi z _)) // hxyi. +move=> /ltrW p0y /ltrW px0; case: (@poly_ivt p x y); rewrite ?inE ?px0 //. +by move=> z hz; rewrite (negPf (hi z _)) // hxyi. +Qed. + +Lemma poly_div_factor : forall (a:R) (P : {poly R} -> Prop), + (forall k, P k%:P) -> + (forall p n k, p.[a] != 0 -> P p -> + P (p * ('X - a%:P)^+(n.+1) + k%:P)%R) + -> forall p, P p. +Proof. +move=> a P Pk Pq p. +move: {-2}p (leqnn (size p)); elim: (size p)=> {p} [|n ihn] p spn. + move: spn; rewrite leqn0 size_poly_eq0; move/eqP->; rewrite -polyC0. + exact: Pk. +case: (leqP (size p) 1)=> sp1; first by rewrite [p]size1_polyC ?sp1//. +rewrite (Pdiv.IdomainMonic.divp_eq (monicXsubC a) p) [_ %% _]size1_polyC; last first. + rewrite -ltnS. + by rewrite (@leq_trans (size ('X - a%:P))) // ?ltn_modp ?polyXsubC_eq0 ?size_XsubC. +have [n' [q hqa hp]] := multiplicity_XsubC (p %/ ('X - a%:P)) a. +rewrite divpN0 ?size_XsubC ?polyXsubC_eq0 ?sp1 //= in hqa. +rewrite hp -mulrA -exprSr; apply: Pq=> //; apply: ihn. +rewrite (@leq_trans (size (q * ('X - a%:P) ^+ n'))) //. + rewrite size_mul ?expf_eq0 ?polyXsubC_eq0 ?andbF //; last first. + by apply: contra hqa; move/eqP->; rewrite root0. + by rewrite size_exp_XsubC addnS leq_addr. +by rewrite -hp size_divp ?polyXsubC_eq0 ?size_XsubC // leq_subLR. +Qed. + +Lemma nth_root x n : x > 0 -> { y | y > 0 & y ^+ (n.+1) = x }. +Proof. +move=> l0x. +case: (ltrgtP x 1)=> hx; last by exists 1; rewrite ?hx ?lter01// expr1n. + case: (@poly_ivt ('X ^+ n.+1 - x%:P) 0 1); first by rewrite ler01. + rewrite ?(hornerE,horner_exp) ?inE. + by rewrite exprS mul0r sub0r expr1n oppr_cp0 subr_gte0/= !ltrW. + move=> y; case/andP=> [l0y ly1]; rewrite rootE ?(hornerE,horner_exp). + rewrite subr_eq0; move/eqP=> hyx; exists y=> //; rewrite lt0r l0y. + rewrite andbT; apply/eqP=> y0; move: hyx; rewrite y0. + by rewrite exprS mul0r=> x0; move: l0x; rewrite -x0 ltrr. +case: (@poly_ivt ('X ^+ n.+1 - x%:P) 0 x); first by rewrite ltrW. + rewrite ?(hornerE,horner_exp) exprS mul0r sub0r ?inE. + by rewrite oppr_cp0 (ltrW l0x) subr_ge0 ler_eexpr // ltrW. +move=> y; case/andP=> l0y lyx; rewrite rootE ?(hornerE,horner_exp). +rewrite subr_eq0; move/eqP=> hyx; exists y=> //; rewrite lt0r l0y. +rewrite andbT; apply/eqP=> y0; move: hyx; rewrite y0. +by rewrite exprS mul0r=> x0; move: l0x; rewrite -x0 ltrr. +Qed. + +Lemma poly_cont x p e : e > 0 -> exists2 d, + d > 0 & forall y, `|y - x| < d -> `|p.[y] - p.[x]| < e. +Proof. +elim/(@poly_div_factor x): p e. + move=> e ep; exists 1; rewrite ?ltr01// => y hy. + by rewrite !hornerC subrr normr0. +move=> p n k pxn0 Pp e ep. +case: (Pp (`|p.[x]|/2%:R)). + by rewrite pmulr_lgt0 ?invr_gte0//= ?ltr0Sn// normrE. +move=> d' d'p He'. +case: (@nth_root (e / ((3%:R / 2%:R) * `|p.[x]|)) n). + by rewrite ltr_pdivl_mulr ?mul0r ?pmulr_rgt0 ?invr_gt0 ?normrE ?ltr0Sn. +move=> d dp rootd. +exists (minr d d'); first by rewrite ltr_minr dp. +move=> y; rewrite ltr_minr; case/andP=> hxye hxye'. +rewrite !(hornerE, horner_exp) subrr [0 ^+ _]exprS mul0r mulr0 add0r addrK. +rewrite normrM (@ler_lt_trans _ (`|p.[y]| * d ^+ n.+1)) //. + by rewrite ler_wpmul2l ?normrE // normrX ler_expn2r -?topredE /= ?normrE 1?ltrW. +rewrite rootd mulrCA gtr_pmulr //. +rewrite ltr_pdivr_mulr ?mul1r ?pmulr_rgt0 ?invr_gt0 ?ltr0Sn ?normrE //. +rewrite mulrDl mulrDl divff; last by rewrite -mulr2n pnatr_eq0. +rewrite !mul1r mulrC -ltr_subl_addr. +by rewrite (ler_lt_trans _ (He' y _)) // ler_sub_dist. +Qed. + +(* Todo : orderedpoly !! *) +(* Lemma deriv_expz_nat : forall (n : nat) p, (p ^ n)^`() = (p^`() * p ^ (n.-1)) *~ n. *) +(* Proof. *) +(* elim=> [|n ihn] p /=; first by rewrite expr0z derivC mul0zr. *) +(* rewrite exprSz_nat derivM ihn mulzrAr mulrCA -exprSz_nat. *) +(* by case: n {ihn}=> [|n] //; rewrite mul0zr addr0 mul1zr. *) +(* Qed. *) + +(* Definition derivCE := (derivE, deriv_expz_nat). *) + +(* Lemma size_poly_ind : forall K : {poly R} -> Prop, *) +(* K 0 -> *) +(* (forall p sp, size p = sp.+1 -> *) +(* forall q, (size q <= sp)%N -> K q -> K p) *) +(* -> forall p, K p. *) +(* Proof. *) +(* move=> K K0 ihK p. *) +(* move: {-2}p (leqnn (size p)); elim: (size p)=> {p} [|n ihn] p spn. *) +(* by move: spn; rewrite leqn0 size_poly_eq0; move/eqP->. *) +(* case spSn: (size p == n.+1). *) +(* move/eqP:spSn; move/ihK=> ihKp; apply: (ihKp 0)=>//. *) +(* by rewrite size_poly0. *) +(* by move:spn; rewrite leq_eqVlt spSn /= ltnS; by move/ihn. *) +(* Qed. *) + +(* Lemma size_poly_indW : forall K : {poly R} -> Prop, *) +(* K 0 -> *) +(* (forall p sp, size p = sp.+1 -> *) +(* forall q, size q = sp -> K q -> K p) *) +(* -> forall p, K p. *) +(* Proof. *) +(* move=> K K0 ihK p. *) +(* move: {-2}p (leqnn (size p)); elim: (size p)=> {p} [|n ihn] p spn. *) +(* by move: spn; rewrite leqn0 size_poly_eq0; move/eqP->. *) +(* case spSn: (size p == n.+1). *) +(* move/eqP:spSn; move/ihK=> ihKp; case: n ihn spn ihKp=> [|n] ihn spn ihKp. *) +(* by apply: (ihKp 0)=>//; rewrite size_poly0. *) +(* apply: (ihKp 'X^n)=>//; first by rewrite size_polyXn. *) +(* by apply: ihn; rewrite size_polyXn. *) +(* by move:spn; rewrite leq_eqVlt spSn /= ltnS; by move/ihn. *) +(* Qed. *) + +Lemma poly_ltsp_roots : forall p (rs : seq R), + (size rs >= size p)%N -> uniq rs -> all (root p) rs -> p = 0. +Proof. +move=> p rs hrs urs rrs; apply/eqP; apply: contraLR hrs=> np0. +by rewrite -ltnNge; apply: max_poly_roots. +Qed. + +Lemma ivt_sign : forall (p : {poly R}) (a b : R), + a <= b -> sgr p.[a] * sgr p.[b] = -1 -> { x : R | x \in `]a, b[ & root p x}. +Proof. +move=> p a b hab /eqP; rewrite mulrC mulr_sg_eqN1=> /andP [spb0 /eqP spb]. + case: (@poly_ivt (sgr p.[b] *: p) a b)=> //. + by rewrite !hornerZ {1}spb mulNr -!normrEsg inE /= oppr_cp0 !normrE. +move=> c hc; rewrite rootZ ?sgr_eq0 // => rpc; exists c=> //. +(* need for a lemma reditvP *) +rewrite inE /= !ltr_neqAle andbCA -!andbA [_ && (_ <= _)]hc andbT eq_sym -negb_or. +apply/negP=> /orP [] /eqP ec; move: rpc; rewrite -ec /root ?(negPf spb0) //. +by rewrite -sgr_cp0 -[sgr _]opprK -spb eqr_oppLR oppr0 sgr_cp0 (negPf spb0). +Qed. + +Let rolle_weak : forall a b p, a < b -> + p.[a] = 0 -> p.[b] = 0 -> + {c | (c \in `]a, b[) & (p^`().[c] == 0) || (p.[c] == 0)}. +Proof. +move=> a b p lab pa0 pb0; apply/sig2W. +case p0: (p == 0). + rewrite (eqP p0); exists (mid a b); first by rewrite mid_in_itv. + by rewrite derivC horner0 eqxx. +have [n [p' p'a0 hp]] := multiplicity_XsubC p a; rewrite p0 /= in p'a0. +case: n hp pa0 p0 pb0 p'a0=> [ | n -> _ p0 pb0 p'a0]. + by rewrite {1}expr0 mulr1 rootE=> ->; move/eqP->. +have [m [q qb0 hp']] := multiplicity_XsubC p' b. +rewrite (contraNneq _ p'a0) /= in qb0 => [|->]; last exact: root0. +case: m hp' pb0 p0 p'a0 qb0=> [|m]. + rewrite {1}expr0 mulr1=> ->; move/eqP. + rewrite !(hornerE, horner_exp, mulf_eq0). + by rewrite !expf_eq0 !subr_eq0 !(gtr_eqF lab) !andbF !orbF !rootE=> ->. +move=> -> _ p0 p'a0 qb0; case: (sgrP (q.[a] * q.[b])); first 2 last. +- move=> sqasb; case: (@ivt_sign q a b)=> //; first exact: ltrW. + by apply/eqP; rewrite -sgrM sgr_cp0. + move=> c lacb rqc; exists c=> //. + by rewrite !hornerM (eqP rqc) !mul0r eqxx orbT. +- move/eqP; rewrite mulf_eq0 (rootPf qb0) orbF; move/eqP=> qa0. + by move: p'a0; rewrite ?rootM rootE qa0 eqxx. +- move=> hspq; rewrite !derivCE /= !mul1r mulrDl !pmulrn. + set xan := (('X - a%:P) ^+ n); set xbm := (('X - b%:P) ^+ m). + have ->: ('X - a%:P) ^+ n.+1 = ('X - a%:P) * xan by rewrite exprS. + have ->: ('X - b%:P) ^+ m.+1 = ('X - b%:P) * xbm by rewrite exprS. + rewrite -mulrzl -[_ *~ n.+1]mulrzl. + have fac : forall x y z : {poly R}, x * (y * xbm) * (z * xan) + = (y * z * x) * (xbm * xan). + by move=> x y z; rewrite mulrCA !mulrA [_ * y]mulrC mulrA. + rewrite !fac -!mulrDl; set r := _ + _ + _. + case: (@ivt_sign (sgr q.[b] *: r) a b); first exact: ltrW. + rewrite !hornerZ !sgr_smul mulrACA -expr2 sqr_sg (rootPf qb0) mul1r. + rewrite !(subrr, mul0r, mulr0, addr0, add0r, hornerC, hornerXsubC, + hornerD, hornerN, hornerM, hornerMn). + rewrite [_ * _%:R]mulrC -!mulrA !pmulrn !mulrzl !sgrMz -sgrM. + rewrite mulrAC mulrA -mulrA sgrM -opprB mulNr sgrN sgrM. + by rewrite !gtr0_sg ?subr_gt0 ?mulr1 // mulrC. +move=> c lacb; rewrite rootE hornerZ mulf_eq0. +rewrite sgr_cp0 (rootPf qb0) orFb=> rc0. +by exists c=> //; rewrite !hornerM !mulf_eq0 rc0. +Qed. + +Theorem rolle : forall a b p, a < b -> + p.[a] = p.[b] -> {c | c \in `]a, b[ & p^`().[c] = 0}. +Proof. +move=> a b p lab pab. +wlog pb0 : p pab / p.[b] = 0=> [hwlog|]. + case: (hwlog (p - p.[b]%:P)); rewrite ?hornerE ?pab ?subrr //. + by move=> c acb; rewrite derivE derivC subr0=> hc; exists c. +move: pab; rewrite pb0=> pa0. +have: (forall rs : seq R, {subset rs <= `]a, b[} -> + (size p <= size rs)%N -> uniq rs -> all (root p) rs -> p = 0). + by move=> rs hrs; apply: poly_ltsp_roots. +elim: (size p) a b lab pa0 pb0=> [|n ihn] a b lab pa0 pb0 max_roots. + rewrite (@max_roots [::]) //=. + by exists (mid a b); rewrite ?mid_in_itv // derivE horner0. +case: (@rolle_weak a b p); rewrite // ?pa0 ?pb0 //=. +move=> c hc; case: (altP (_ =P 0))=> //= p'c0 pc0; first by exists c. +suff: { d : R | d \in `]a, c[ & (p^`()).[d] = 0 }. + case=> [d hd] p'd0; exists d=> //. + by apply: subitvPr hd; rewrite //= (itvP hc). +apply: ihn=> //; first by rewrite (itvP hc). + exact/eqP. +move=> rs hrs srs urs rrs; apply: (max_roots (c :: rs))=> //=; last exact/andP. + move=> x; rewrite in_cons; case/predU1P=> hx; first by rewrite hx. + have: x \in `]a, c[ by apply: hrs. + by apply: subitvPr; rewrite /= (itvP hc). +by rewrite urs andbT; apply/negP; move/hrs; rewrite bound_in_itv. +Qed. + +Theorem mvt : forall a b p, a < b -> + {c | c \in `]a, b[ & p.[b] - p.[a] = p^`().[c] * (b - a)}. +Proof. +move=> a b p lab. +pose q := (p.[b] - p.[a])%:P * ('X - a%:P) - (b - a)%:P * (p - p.[a]%:P). +case: (@rolle a b q)=> //. + by rewrite /q !hornerE !(subrr,mulr0) mulrC subrr. +move=> c lacb q'x0; exists c=> //. +move: q'x0; rewrite /q !derivE !(mul0r,add0r,subr0,mulr1). +by move/eqP; rewrite !hornerE mulrC subr_eq0; move/eqP. +Qed. + +Lemma deriv_sign : forall a b p, + (forall x, x \in `]a, b[ -> p^`().[x] >= 0) + -> (forall x y, (x \in `]a, b[) && (y \in `]a, b[) + -> x < y -> p.[x] <= p.[y] ). +Proof. +move=> a b p Pab x y; case/andP=> hx hy xy. +rewrite -subr_gte0; case: (@mvt x y p)=> //. +move=> c hc ->; rewrite pmulr_lge0 ?subr_gt0 ?Pab //. +by apply: subitvP hc; rewrite //= ?(itvP hx) ?(itvP hy). +Qed. + +End Prelim. + +Section MonotonictyAndRoots. + +Section NoRoot. + +Variable (p : {poly R}). + +Variables (a b : R). + +Hypothesis der_pos : forall x, x \in `]a, b[ -> (p^`()).[x] > 0. + +Lemma derp0r : 0 <= p.[a] -> forall x, x \in `]a, b] -> p.[x] > 0. +Proof. +move=> pa0 x; case/itv_dec=> ax xb; case: (mvt p ax) => c acx. +move/(canRL (@subrK _ _))->; rewrite ltr_paddr //. +by rewrite pmulr_rgt0 ?subr_gt0 // der_pos //; apply: subitvPr acx. +Qed. + +Lemma derppr : 0 < p.[a] -> forall x, x \in `[a, b] -> p.[x] > 0. +Proof. +move=> pa0 x hx; case exa: (x == a); first by rewrite (eqP exa). +case: (@mvt a x p); first by rewrite ltr_def exa (itvP hx). +move=> c hc; move/eqP; rewrite subr_eq; move/eqP->; rewrite ltr_spsaddr //. +rewrite pmulr_rgt0 ?subr_gt0 //; first by rewrite ltr_def exa (itvP hx). +by rewrite der_pos // (subitvPr _ hc) //= ?(itvP hx). +Qed. + +Lemma derp0l : p.[b] <= 0 -> forall x, x \in `[a, b[ -> p.[x] < 0. +Proof. +move=> pb0 x hx; rewrite -oppr_gte0 /=. +case: (@mvt x b p)=> //; first by rewrite (itvP hx). +move=> c hc; move/(canRL (@addKr _ _))->; rewrite ltr_spaddr ?oppr_ge0 //. +rewrite pmulr_rgt0 // ?subr_gt0 ?(itvP hx) //. +by rewrite der_pos // (subitvPl _ hc) //= (itvP hx). +Qed. + +Lemma derpnl : p.[b] < 0 -> forall x, x \in `[a, b] -> p.[x] < 0. +Proof. +move=> pbn x hx; case xb: (b == x) pbn; first by rewrite -(eqP xb). +case: (@mvt x b p); first by rewrite ltr_def xb ?(itvP hx). +move=> y hy; move/eqP; rewrite subr_eq; move/eqP->. +rewrite !ltrNge; apply: contra=> hpx; rewrite ler_paddr // ltrW //. +rewrite pmulr_rgt0 ?subr_gt0 ?(itvP hy) //. +by rewrite der_pos // (subitvPl _ hy) //= (itvP hx). +Qed. + +End NoRoot. + +Section NoRoot_sg. + +Variable (p : {poly R}). + +Variables (a b c : R). + +Hypothesis derp_neq0 : {in `]a, b[, noroot p^`()}. +Hypothesis acb : c \in `]a, b[. + +Local Notation sp'c := (sgr p^`().[c]). +Local Notation q := (sp'c *: p). + +Fact derq_pos x : x \in `]a, b[ -> (q^`()).[x] > 0. +Proof. +move=> hx; rewrite derivZ hornerZ -sgr_cp0. +rewrite sgrM sgr_id mulr_sg_eq1 derp_neq0 //=. +by apply/eqP; apply: (@polyrN0_itv `]a, b[). +Qed. + +Fact sgp x : sgr p.[x] = sp'c * sgr q.[x]. +Proof. +by rewrite hornerZ sgr_smul mulrA -expr2 sqr_sg derp_neq0 ?mul1r. +Qed. + +Fact hsgp x : 0 < q.[x] -> sgr p.[x] = sp'c. +Proof. by rewrite -sgr_cp0 sgp => /eqP->; rewrite mulr1. Qed. + +Fact hsgpN x : q.[x] < 0 -> sgr p.[x] = - sp'c. +Proof. by rewrite -sgr_cp0 sgp => /eqP->; rewrite mulrN1. Qed. + +Lemma ders0r : p.[a] = 0 -> forall x, x \in `]a, b] -> sgr p.[x] = sp'c. +Proof. +move=> pa0 x hx; rewrite hsgp // (@derp0r _ a b) //; first exact: derq_pos. +by rewrite hornerZ pa0 mulr0. +Qed. + +Lemma derspr : sgr p.[a] = sp'c -> forall x, x \in `[a, b] -> sgr p.[x] = sp'c. +Proof. +move=> spa x hx; rewrite hsgp // (@derppr _ a b) //; first exact: derq_pos. +by rewrite -sgr_cp0 hornerZ sgrM sgr_id spa -expr2 sqr_sg derp_neq0. +Qed. + +Lemma ders0l : p.[b] = 0 -> forall x, x \in `[a, b[ -> sgr p.[x] = -sp'c. +Proof. +move=> pa0 x hx; rewrite hsgpN // (@derp0l _ a b) //; first exact: derq_pos. +by rewrite hornerZ pa0 mulr0. +Qed. + +Lemma derspl : sgr p.[b] = -sp'c -> forall x, x \in `[a, b] -> sgr p.[x] = -sp'c. +Proof. +move=> spb x hx; rewrite hsgpN // (@derpnl _ a b) //; first exact: derq_pos. +by rewrite -sgr_cp0 hornerZ sgr_smul spb mulrN -expr2 sqr_sg derp_neq0. +Qed. + +End NoRoot_sg. + +Variable (p : {poly R}). + +Variables (a b : R). + +Section der_root. + +Hypothesis der_pos : forall x, x \in `]a, b[ -> (p^`()).[x] > 0. + +Lemma derp_root : a <= b -> 0 \in `]p.[a], p.[b][ -> + { r : R | + [/\ forall x, x \in `[a, r[ -> p.[x] < 0, + p.[r] = 0, + r \in `]a, b[ & + forall x, x \in `]r, b] -> p.[x] > 0] }. +Proof. +move=> leab hpab. +have /eqP hs : sgr p.[a] * sgr p.[b] == -1. + by rewrite -sgrM sgr_cp0 pmulr_llt0 ?(itvP hpab). +case: (ivt_sign leab hs) => r arb pr0; exists r; split => //; last 2 first. +- by move/eqP: pr0. +- move=> x rxb; have hd : forall t, t \in `]r, b[ -> 0 < (p^`()).[t]. + by move=> t ht; rewrite der_pos // ?(subitvPl _ ht) //= ?(itvP arb). + by rewrite (derp0r hd) ?(eqP pr0). +- move=> x rxb; have hd : forall t, t \in `]a, r[ -> 0 < (p^`()).[t]. + by move=> t ht; rewrite der_pos // ?(subitvPr _ ht) //= ?(itvP arb). + by rewrite (derp0l hd) ?(eqP pr0). +Qed. + +End der_root. + +(* Section der_root_sg. *) + +(* Hypothesis der_pos : forall x, x \in `]a, b[ -> (p^`()).[x] != 0. *) + +(* Lemma derp_root : a <= b -> sgr p.[a] != sgr p.[b] -> *) +(* { r : R | *) +(* [/\ forall x, x \in `[a, r[ -> p.[x] < 0, *) +(* p.[r] = 0, *) +(* r \in `]a, b[ & *) +(* forall x, x \in `]r, b] -> p.[x] > 0] }. *) +(* Proof. *) +(* move=> leab hpab. *) +(* have hs : sgr p.[a] * sgr p.[b] == -1. *) +(* by rewrite -sgrM sgr_cp0 mulr_lt0_gt0 ?(itvP hpab). *) +(* case: (ivt_sign ivt leab hs) => r arb pr0; exists r; split => //; last 2 first. *) +(* - by move/eqP: pr0. *) +(* - move=> x rxb; have hd : forall t, t \in `]r, b[ -> 0 < (p^`()).[t]. *) +(* by move=> t ht; rewrite der_pos // ?(subitvPl _ ht) //= ?(itvP arb). *) +(* by rewrite (derp0r hd) ?(eqP pr0). *) +(* - move=> x rxb; have hd : forall t, t \in `]a, r[ -> 0 < (p^`()).[t]. *) +(* by move=> t ht; rewrite der_pos // ?(subitvPr _ ht) //= ?(itvP arb). *) +(* by rewrite (derp0l hd) ?(eqP pr0). *) +(* Qed. *) + +(* End der_root. *) + +End MonotonictyAndRoots. + +Section RootsOn. + +Variable T : predType R. + +Definition roots_on (p : {poly R}) (i : T) (s : seq R) := + forall x, (x \in i) && (root p x) = (x \in s). + +Lemma roots_onP : forall p i s, roots_on p i s -> {in i, root p =1 mem s}. +Proof. by move=> p i s hp x hx; move: (hp x); rewrite hx. Qed. + +Lemma roots_on_in : forall p i s, + roots_on p i s -> forall x, x \in s -> x \in i. +Proof. by move=> p i s hp x; rewrite -hp; case/andP. Qed. + +Lemma roots_on_root : forall p i s, + roots_on p i s -> forall x, x \in s -> root p x. +Proof. by move=> p i s hp x; rewrite -hp; case/andP. Qed. + +Lemma root_roots_on : forall p i s, + roots_on p i s -> forall x, x \in i -> root p x -> x \in s. +Proof. by move=> p i s hp x; rewrite -hp=> ->. Qed. + +Lemma roots_on_opp : forall p i s, + roots_on (- p) i s -> roots_on p i s. +Proof. by move=> p i s hp x; rewrite -hp rootN. Qed. + +Lemma roots_on_nil : forall p i, roots_on p i [::] -> {in i, noroot p}. +Proof. +by move=> p i hp x hx; move: (hp x); rewrite in_nil hx /=; move->. +Qed. + +Lemma roots_on_same : forall s' p i s, + s =i s' -> (roots_on p i s <-> roots_on p i s'). +Proof. by move=> s' p i s hss'; split=> hs x; rewrite (hss', (I, hss')). Qed. + +End RootsOn. + + +(* (* Symmetry of center a *) *) +(* Definition symr (a x : R) := a - x. *) + +(* Lemma symr_inv : forall a, involutive (symr a). *) +(* Proof. by move=> a y; rewrite /symr opprD addrA subrr opprK add0r. Qed. *) + +(* Lemma symr_inj : forall a, injective (symr a). *) +(* Proof. by move=> a; apply: inv_inj; apply: symr_inv. Qed. *) + +(* Lemma ltr_sym : forall a x y, (symr a x < symr a y) = (y < x). *) +(* Proof. by move=> a x y; rewrite lter_add2r lter_oppr opprK. Qed. *) + +(* Lemma symr_add_itv : forall a b x, *) +(* (a < symr (a + b) x < b) = (a < x < b). *) +(* Proof. *) +(* move=> a b x; rewrite andbC. *) +(* by rewrite lter_subrA lter_add2r -lter_addlA lter_add2l. *) +(* Qed. *) + +Lemma roots_on_comp : forall p a b s, + roots_on (p \Po (-'X)) `](-b), (-a)[ + (map (-%R) s) <-> roots_on p `]a, b[ s. +Proof. +move=> p a b /= s; split=> hs x; rewrite ?root_comp ?hornerE. + move: (hs (-x)); rewrite mem_map; last exact: (inv_inj (@opprK _)). + by rewrite root_comp ?hornerE oppr_itv !opprK. +rewrite -[x]opprK oppr_itv /= mem_map; last exact: (inv_inj (@opprK _)). +by move: (hs (-x)); rewrite !opprK. +Qed. + +Lemma min_roots_on : forall p a b x s, + all (> x) s -> roots_on p `]a, b[ (x :: s) + -> [/\ x \in `]a, b[, (roots_on p `]a, x[ [::]), + (root p x) & (roots_on p `]x, b[ s)]. +Proof. +move=> p a b x s lxs hxs. +have hx: x \in `]a, b[ by rewrite (roots_on_in hxs) ?mem_head. +rewrite hx (roots_on_root hxs) ?mem_head //. +split=> // y; move: (hxs y); rewrite ?in_nil ?in_cons /=. + case hy: (y \in `]a, x[)=> //=. + rewrite (subitvPr _ hy) //= ?(itvP hx) //= => ->. + rewrite ltr_eqF ?(itvP hy) //=; apply/negP. + by move/allP: lxs=> lxs /lxs; rewrite ltrNge ?(itvP hy). +move/allP:lxs=>lxs; case eyx: (y == _)=> /=. + case/andP=> hy _; rewrite (eqP eyx). + rewrite boundl_in_itv /=; symmetry. + by apply/negP; move/lxs; rewrite ltrr. +case py0: root; rewrite !(andbT, andbF) //. +case ys: (y \in s); first by move/lxs:ys; rewrite ?inE => ->; case/andP. +move/negP; move/negP=> nhy; apply: negbTE; apply: contra nhy. +by apply: subitvPl; rewrite //= ?(itvP hx). +Qed. + +Lemma max_roots_on : forall p a b x s, + all (< x) s -> roots_on p `]a, b[ (x :: s) + -> [/\ x \in `]a, b[, (roots_on p `]x, b[ [::]), + (root p x) & (roots_on p `]a, x[ s)]. +Proof. +move=> p a b x s; move/allP=> lsx; move/roots_on_comp=> /=. +move/min_roots_on; case. + apply/allP=> y; rewrite -[y]opprK mem_map. + by move/lsx; rewrite ltr_oppr opprK. + exact: (inv_inj (@opprK _)). +rewrite oppr_itv root_comp !hornerE !opprK=> -> rxb -> rax. +by split=> //; apply/roots_on_comp. +Qed. + +Lemma roots_on_cons : forall p a b r s, + sorted <%R (r :: s) -> roots_on p `]a, b[ (r :: s) -> roots_on p `]r, b[ s. +Proof. +move=> p a b r s /= hrs hr. +have:= (order_path_min (@ltr_trans _) hrs)=> allrs. +by case: (min_roots_on allrs hr). +Qed. +(* move=> p a b r s hp hr x; apply/andP/idP. *) +(* have:= (order_path_min (@ltr_trans _) hp) => /=; case/andP=> ar1 _. *) +(* case; move/ooitvP=> rxb rpx; move: (hr x); rewrite in_cons rpx andbT. *) +(* by rewrite rxb andbT (ltr_trans ar1) 1?eq_sym ?ltr_eqF ?rxb. *) +(* move=> spx. *) +(* have xrsp: x \in r :: s by rewrite in_cons spx orbT. *) +(* rewrite (roots_on_root hr) //. *) +(* rewrite (roots_on_in hr xrsp); move: hp => /=; case/andP=> _. *) +(* by move/(order_path_min (@ltr_trans _)); move/allP; move/(_ _ spx)->. *) +(* Qed. *) + +Lemma roots_on_rcons : forall p a b r s, + sorted <%R (rcons s r) -> roots_on p `]a, b[ (rcons s r) + -> roots_on p `]a, r[ s. +Proof. +move=> p a b r s; rewrite -{1}[s]revK -!rev_cons rev_sorted /=. +move=> hrs hr. +have := (order_path_min (rev_trans (@ltr_trans _)) hrs)=> allrrs. +have allrs: (all (< r) s). + by apply/allP=> x hx; move/allP:allrrs; apply; rewrite mem_rev. +move/(@roots_on_same _ _ _ _ (r::s)):hr=>hr. +case: (max_roots_on allrs (hr _))=> //. +by move=> x; rewrite mem_rcons. +Qed. + + +(* move=> p a b r s; rewrite -{1}[s]revK -!rev_cons rev_sorted. *) +(* rewrite [r :: _]lock /=; unlock; move=> hp hr x; apply/andP/idP. *) +(* have:= (order_path_min (rev_trans (@ltr_trans _)) hp) => /=. *) +(* case/andP=> ar1 _; case; move/ooitvP=> axr rpx. *) +(* move: (hr x); rewrite mem_rcons in_cons rpx andbT axr andTb. *) +(* by rewrite ((rev_trans (@ltr_trans _) ar1)) ?ltr_eqF ?axr. *) +(* move=> spx. *) +(* have xrsp: x \in rcons s r by rewrite mem_rcons in_cons spx orbT. *) +(* rewrite (roots_on_root hr) //. *) +(* rewrite (roots_on_in hr xrsp); move: hp => /=; case/andP=> _. *) +(* move/(order_path_min (rev_trans (@ltr_trans _))); move/allP. *) +(* by move/(_ x)=> -> //; rewrite mem_rev. *) +(* Qed. *) + +Lemma no_roots_on : forall (p : {poly R}) a b, + {in `]a, b[, noroot p} -> roots_on p `]a, b[ [::]. +Proof. +move=> p a b hr x; rewrite in_nil; case hx: (x \in _) => //=. +by apply: negPf; apply: hr hx. +Qed. + +Lemma monotonic_rootN : forall (p : {poly R}) (a b : R), + {in `]a, b[, noroot p^`()} -> + ((roots_on p `]a, b[ [::]) + ({r : R | roots_on p `]a, b[ [:: r]}))%type. +Proof. +move=> p a b hp'; case: (ltrP a b); last first => leab. + by left => x; rewrite in_nil itv_gte. +wlog {hp'} hp'sg: p / forall x, x \in `]a, b[ -> sgr (p^`()).[x] = 1. + move=> hwlog. have := (polyrN0_itv hp'). + move: (mid_in_itvoo leab)=> hm /(_ _ _ hm). + case: (sgrP _.[mid a b])=> hpm. + - by move=> norm; move: (hp' _ hm); rewrite rootE hpm eqxx. + - by move/(hwlog p). + - move=> hp'N; case: (hwlog (-p))=> [x|h|[r hr]]. + * by rewrite derivE hornerN sgrN=> /hp'N->; rewrite opprK. + * by left; apply: roots_on_opp. + * by right; exists r; apply: roots_on_opp. +have hp'pos: forall x, x \in `]a, b[ -> (p^`()).[x] > 0. + by move=> x; move/hp'sg; move/eqP; rewrite sgr_cp0. +case: (lerP 0 p.[a]) => ha. +- left; apply: no_roots_on => x axb. + by rewrite rootE gtr_eqF // (@derp0r _ a b) // (subitvPr _ axb) /=. +- case: (lerP p.[b] 0) => hb. + + left => x; rewrite in_nil; apply: negbTE; case axb: (x \in `]a, b[) => //=. + by rewrite rootE ltr_eqF // (@derp0l _ a b) // (subitvPl _ axb) /=. + + case: (derp_root hp'pos (ltrW leab) _). + by rewrite ?inE; apply/andP. + move=> r [h1 h2 h3] h4; right. + exists r => x; rewrite in_cons in_nil (itv_splitU2 h3). + case exr: (x == r); rewrite ?(andbT, orbT, andbF, orbF) /=. + by rewrite rootE (eqP exr) h2 eqxx. + case px0: root; rewrite (andbT, andbF) //. + move/eqP: px0=> px0; apply/negP; case/orP=> hx. + by move: (h1 x); rewrite (subitvPl _ hx) //= px0 ltrr; move/implyP. + by move: (h4 x); rewrite (subitvPr _ hx) //= px0 ltrr; move/implyP. +Qed. + +(* Inductive polN0 : Type := PolN0 : forall p : {poly R}, p != 0 -> polN0. *) + +(* Coercion pol_of_polN0 i := let: PolN0 p _ := i in p. *) + +(* Canonical Structure polN0_subType := [subType for pol_of_polN0]. *) +(* Definition polN0_eqMixin := Eval hnf in [eqMixin of polN0 by <:]. *) +(* Canonical Structure polN0_eqType := *) +(* Eval hnf in EqType polN0 polN0_eqMixin. *) +(* Definition polN0_choiceMixin := [choiceMixin of polN0 by <:]. *) +(* Canonical Structure polN0_choiceType := *) +(* Eval hnf in ChoiceType polN0 polN0_choiceMixin. *) + +(* Todo : Lemmas about operations of intervall : + itversection, restriction and splitting *) +Lemma cat_roots_on : forall (p : {poly R}) a b x, + x \in `]a, b[ -> ~~ (root p x) + -> forall s s', + sorted <%R s -> sorted <%R s' + -> roots_on p `]a, x[ s -> roots_on p `]x, b[ s' + -> roots_on p `]a, b[ (s ++ s'). +Proof. +move=> p a b x hx /= npx0 s. +elim: s a hx => [|y s ihs] a hx s' //= ss ss'. + move/roots_on_nil=> hax hs' y. + rewrite -hs'; case py0: root; rewrite ?(andbT, andbF) //. + rewrite (itv_splitU2 hx); case: (y \in `]x, b[); rewrite ?orbF ?orbT //=. + apply/negP; case/orP; first by move/hax; rewrite py0. + by move/eqP=> exy; rewrite -exy py0 in npx0. +move/min_roots_on; rewrite order_path_min //; last exact: ltr_trans. +case=> // hy hay py0 hs hs' z. +rewrite in_cons; case ezy: (z == y)=> /=. + by rewrite (eqP ezy) py0 andbT (subitvPr _ hy) //= ?(itvP hx). +rewrite -(ihs y) //; last exact: path_sorted ss; last first. + by rewrite inE /= (itvP hx) (itvP hy). +case pz0: root; rewrite ?(andbT, andbF) //. +rewrite (@itv_splitU2 _ y); last by rewrite (subitvPr _ hy) //= (itvP hx). +rewrite ezy /=; case: (z \in `]y, b[); rewrite ?orbF ?orbT //. +by apply/negP=> hz; move: (hay z); rewrite hz pz0 in_nil. +Qed. + +CoInductive roots_spec (p : {poly R}) (i : pred R) (s : seq R) : + {poly R} -> bool -> seq R -> Type := +| Roots0 of p = 0 :> {poly R} & s = [::] : roots_spec p i s 0 true [::] +| Roots of p != 0 & roots_on p i s + & sorted <%R s : roots_spec p i s p false s. + +(* still much too long *) +Lemma itv_roots : forall (p :{poly R}) (a b : R), + {s : seq R & roots_spec p (topred `]a, b[) s p (p == 0) s}. +Proof. +move=> p a b; case p0: (_ == 0). + by rewrite (eqP p0); exists [::]; constructor. +elim: (size p) {-2}p (leqnn (size p)) p0 a b => {p} [| n ihn] p sp p0 a b. + by exists [::]; move: p0; rewrite -size_poly_eq0 -leqn0 sp. +move/negbT: (p0)=> np0. +case p'0 : (p^`() == 0). + move: p'0; rewrite -derivn1 -derivn_poly0; move/size1_polyC => pC. + exists [::]; constructor=> // x; rewrite in_nil pC rootC; apply: negPf. + by rewrite negb_and -polyC_eq0 -pC p0 orbT. +move/negbT: (p'0) => np'0. +have sizep' : (size p^`() <= n)%N. + rewrite -ltnS; apply: leq_trans sp; rewrite size_deriv prednK // lt0n. + by rewrite size_poly_eq0 p0. +case: (ihn _ sizep' p'0 a b) => sp' ih {ihn}. +case ltab : (a < b); last first. + exists [::]; constructor=> // x; rewrite in_nil. + case axb : (x \in _) => //=. + by case/andP: axb => ax xb; move: ltab; rewrite (ltr_trans ax xb). +elim: sp' a b ltab ih => [|r1 sp' hsp'] a b ltab hp'. + case: hp' np'0; rewrite ?eqxx // => np'0 hroots' _ _. + move/roots_on_nil : hroots' => hroots'. + case: (monotonic_rootN hroots') => [h| [r rh]]. + by exists [::]; constructor. + by exists [:: r]; constructor=> //=; rewrite andbT. +case: hp' np'0; rewrite ?eqxx // => np'0 hroots' /= hpath' _. +case: (min_roots_on _ hroots'). + by rewrite order_path_min //; apply: ltr_trans. +move=> hr1 har1 p'r10 hr1b. +case: (hsp' r1 b); first by rewrite (itvP hr1). + by constructor=> //; rewrite (path_sorted hpath'). +move=> s spec_s. +case: spec_s np0; rewrite ?eqxx //. +move=> np0 hroot hsort _. +move: (roots_on_nil har1). +case pr1 : (root p r1); case/monotonic_rootN => hrootsl; last 2 first. +- exists s; constructor=> //. + by rewrite -[s]cat0s; apply: (cat_roots_on hr1)=> //; rewrite pr1. +- case:hrootsl=> r hr; exists (r::s); constructor=> //=. + by rewrite -cat1s; apply: (cat_roots_on hr1)=> //; rewrite pr1. + rewrite path_min_sorted // => y; rewrite -hroot; case/andP=> hy _. + rewrite (@ltr_trans _ r1) ?(itvP hy) //. + by rewrite (itvP (roots_on_in hr (mem_head _ _))). +- exists (r1::s); constructor=> //=; last first. + rewrite path_min_sorted=> // y; rewrite -hroot. + by case/andP; move/itvP->. + move=> x; rewrite in_cons; case exr1: (x == r1)=> /=. + by rewrite (eqP exr1) pr1 andbT. + rewrite -hroot; case px: root; rewrite ?(andbT, andbF) //. + rewrite (itv_splitU2 hr1) exr1 /=. + case: (_ \in `]r1, _[); rewrite ?(orbT, orbF) //. + by apply/negP=> hx; move: (hrootsl x); rewrite hx px in_nil. +- case: hrootsl => r0 hrootsl. + move/min_roots_on:hrootsl; case=> // hr0 har0 pr0 hr0r1. + exists [:: r0, r1 & s]; constructor=> //=; last first. + rewrite (itvP hr0) /= path_min_sorted // => y. + by rewrite -hroot; case/andP; move/itvP->. + move=> y; rewrite !in_cons (itv_splitU2 hr1) (itv_splitU2 hr0). + case eyr0: (y == r0); rewrite ?(orbT, orbF, orTb, orFb). + by rewrite (eqP eyr0) pr0. + case eyr1: (y == r1); rewrite ?(orbT, orbF, orTb, orFb). + by rewrite (eqP eyr1) pr1. + rewrite -hroot; case py0: root; rewrite ?(andbF, andbT) //. + case: (_ \in `]r1, _[); rewrite ?(orbT, orbF) //. + apply/negP; case/orP=> hy; first by move: (har0 y); rewrite hy py0 in_nil. + by move: (hr0r1 y); rewrite hy py0 in_nil. +Qed. + +Definition roots (p : {poly R}) a b := projT1 (itv_roots p a b). + +Lemma rootsP : forall p a b, + roots_spec p (topred `]a, b[) (roots p a b) p (p == 0) (roots p a b). +Proof. by move=> p a b; rewrite /roots; case hp: itv_roots. Qed. + +Lemma roots0 : forall a b, roots 0 a b = [::]. +Proof. by move=> a b; case: rootsP=> //=; rewrite eqxx. Qed. + +Lemma roots_on_roots : forall p a b, p != 0 -> + roots_on p `]a, b[ (roots p a b). +Proof. by move=> a b p; case:rootsP. Qed. +Hint Resolve roots_on_roots. + +Lemma sorted_roots : forall a b p, sorted <%R (roots p a b). +Proof. by move=> p a b; case: rootsP. Qed. +Hint Resolve sorted_roots. + +Lemma path_roots : forall p a b, path <%R a (roots p a b). +Proof. +move=> p a b; case: rootsP=> //= p0 hp sp; rewrite path_min_sorted //. +by move=> y; rewrite -hp; case/andP; move/itvP->. +Qed. +Hint Resolve path_roots. + +Lemma root_is_roots : + forall (p : {poly R}) (a b : R), p != 0 -> + forall x, x \in `]a, b[ -> root p x = (x \in roots p a b). +Proof. +by move=> p a b; case: rootsP=> // p0 hs ps _ y hy /=; rewrite -hs hy. +Qed. + +Lemma root_in_roots : forall (p : {poly R}) a b, p != 0 -> + forall x, x \in `]a, b[ -> root p x -> x \in (roots p a b). +Proof. by move=> p a b p0 x axb rpx; rewrite -root_is_roots. Qed. + +Lemma root_roots : forall p a b x, x \in roots p a b -> root p x. +Proof. by move=> p a b x; case: rootsP=> // p0 <- _; case/andP. Qed. + +Lemma roots_nil : forall p a b, p != 0 -> + roots p a b = [::] -> {in `]a, b[, noroot p}. +Proof. +move=> p a b; case: rootsP=> // p0 hs ps _ s0 x axb. +by move: (hs x); rewrite s0 in_nil !axb /= => ->. +Qed. + +Lemma roots_in p a b x : x \in roots p a b -> x \in `]a, b[. +Proof. by case: rootsP=> //= np0 ron_p *; exact: (roots_on_in ron_p). Qed. + +Lemma rootsEba : forall p a b, b <= a -> roots p a b = [::]. +Proof. +move=> p a b; case: rootsP=> // p0; case: (roots _ _ _)=> [|x s] hs ps ba //; +by move: (hs x); rewrite itv_gte //= mem_head. +Qed. + +Lemma roots_on_uniq : forall p a b s1 s2, + sorted <%R s1 -> sorted <%R s2 -> + roots_on p `]a, b[ s1 -> roots_on p `]a, b[ s2 -> s1 = s2. +Proof. +move=> p a b s1. +elim: s1 p a b => [| r1 s1 ih] p a b [| r2 s2] ps1 ps2 rs1 rs2 //. +- have rpr2 : root p r2 by apply: (roots_on_root rs2); rewrite mem_head. + have abr2 : r2 \in `]a, b[ by apply: (roots_on_in rs2); rewrite mem_head. + by have:= (rs1 r2); rewrite rpr2 !abr2 in_nil. +- have rpr1 : root p r1 by apply: (roots_on_root rs1); rewrite mem_head. + have abr1 : r1 \in `]a, b[ by apply: (roots_on_in rs1); rewrite mem_head. + by have:= (rs2 r1); rewrite rpr1 !abr1 in_nil. +- have er1r2 : r1 = r2. + move: (rs1 r2); rewrite (roots_on_root rs2) ?mem_head //. + rewrite !(roots_on_in rs2) ?mem_head //= in_cons. + move/(@sym_eq _ true); case/orP => hr2; first by rewrite (eqP hr2). + move: ps1=> /=; move/(order_path_min (@ltr_trans R)); move/allP. + move/(_ r2 hr2) => h1. + move: (rs2 r1); rewrite (roots_on_root rs1) ?mem_head //. + rewrite !(roots_on_in rs1) ?mem_head //= in_cons. + move/(@sym_eq _ true); case/orP => hr1; first by rewrite (eqP hr1). + move: ps2=> /=; move/(order_path_min (@ltr_trans R)); move/allP. + by move/(_ r1 hr1); rewrite ltrNge ltrW. +congr (_ :: _) => //; rewrite er1r2 in ps1 rs1. +have h3 := (roots_on_cons ps1 rs1). +have h4 := (roots_on_cons ps2 rs2). +move: ps1 ps2=> /=; move/path_sorted=> hs1; move/path_sorted=> hs2. +exact: (ih p _ b _ hs1 hs2 h3 h4). +Qed. + +Lemma roots_eq : forall (p q : {poly R}) (a b : R), + p != 0 -> q != 0 -> + ({in `]a, b[, root p =1 root q} + <-> roots p a b = roots q a b). +Proof. +move=> p q a b p0 q0. +case hab : (a < b); last first. + split; first by rewrite !rootsEba // lerNgt hab. + move=> _ x. rewrite !inE; case/andP=> ax xb. + by move: hab; rewrite (@ltr_trans _ x) /=. +split=> hpq. + apply: (@roots_on_uniq p a b); rewrite ?path_roots ?p0 ?q0 //. + by apply: roots_on_roots. + rewrite /roots_on => x; case hx: (_ \in _). + by rewrite -hx hpq //; apply: roots_on_roots. + by rewrite /= -(andFb (q.[x] == 0)) -hx; apply: roots_on_roots. +move=> x axb /=. +by rewrite (@root_is_roots q a b) // (@root_is_roots p a b) // hpq. +Qed. + +Lemma roots_opp : forall p, roots (- p) =2 roots p. +Proof. +move=> p a b; case p0 : (p == 0); first by rewrite (eqP p0) oppr0. +by apply/roots_eq=> [||x]; rewrite ?oppr_eq0 ?p0 ?rootN. +Qed. + +Lemma no_root_roots : forall (p : {poly R}) a b, + {in `]a, b[ , noroot p} -> roots p a b = [::]. +Proof. +move=> p a b hr; case: rootsP=> // p0 hs ps. +apply: (@roots_on_uniq p a b)=> // x; rewrite in_nil. +by apply/negP; case/andP; move/hr; move/negPf->. +Qed. + +Lemma head_roots_on_ge : forall p a b s, a < b -> + roots_on p `]a, b[ s -> a < head b s. +Proof. +move=> p a b [|x s] ab //; move/(_ x). +by rewrite in_cons eqxx; case/andP; case/andP. +Qed. + +Lemma head_roots_ge : forall p a b, a < b -> a < head b (roots p a b). +Proof. +by move=> p a b; case: rootsP=> // *; apply: head_roots_on_ge. +Qed. + +Lemma last_roots_on_le : forall p a b s, a < b -> + roots_on p `]a, b[ s -> last a s < b. +Proof. +move=> p a b [|x s] ab rs //. +by rewrite (itvP (roots_on_in rs _)) //= mem_last. +Qed. + +Lemma last_roots_le : forall p a b, a < b -> last a (roots p a b) < b. +Proof. +by move=> p a b; case: rootsP=> // *; apply: last_roots_on_le. +Qed. + +Lemma roots_uniq : forall p a b s, p != 0 -> + roots_on p `]a, b[ s -> sorted <%R s -> s = roots p a b. +Proof. +move=> p a b s; case: rootsP=> // p0 hs' ps' _ hs ss. +exact: (@roots_on_uniq p a b)=> //. +Qed. + +Lemma roots_cons : forall p a b x s, + (roots p a b == x :: s) + = [&& p != 0, x \in `]a, b[, + (roots p a x == [::]), + (root p x) & (roots p x b == s)]. +Proof. +move=> p a b x s; case: rootsP=> // p0 hs' ps' /=. +apply/idP/idP. + move/eqP=> es'; move: ps' hs'; rewrite es' /= => sxs. + case/min_roots_on; first by apply: order_path_min=> //; apply: ltr_trans. + move=> -> rax px0 rxb. + rewrite px0 (@roots_uniq p a x [::]) // (@roots_uniq p x b s) ?eqxx //=. + by move/path_sorted:sxs. +case: rootsP p0=> // p0 rax sax _. +case/and3P=> hx hax; rewrite (eqP hax) in rax sax. +case: rootsP p0=> // p0 rxb sxb _. +case/andP=> px0 hxb; rewrite (eqP hxb) in rxb sxb. +rewrite [_ :: _](@roots_uniq p a b) //; last first. + rewrite /= path_min_sorted // => y. + by rewrite -(eqP hxb); move/roots_in; move/itvP->. +move=> y; rewrite (itv_splitU2 hx) !andb_orl in_cons. +case hy: (y == x); first by rewrite (eqP hy) px0 orbT. +by rewrite andFb orFb rax rxb in_nil. +Qed. + +Lemma roots_rcons : forall p a b x s, + (roots p a b == rcons s x) + = [&& p != 0, x \in `]a , b[, + (roots p x b == [::]), + (root p x) & (roots p a x == s)]. +Proof. +move=> p a b x s; case: rootsP; first by case: s. +move=> // p0 hs' ps' /=. +apply/idP/idP. + move/eqP=> es'; move: ps' hs'; rewrite es' /= => sxs. + have hsx: rcons s x =i x :: rev s. + by move=> y; rewrite mem_rcons !in_cons mem_rev. + move/(roots_on_same _ _ hsx). + case/max_roots_on. + move: sxs; rewrite -[rcons _ _]revK rev_sorted rev_rcons. + by apply: order_path_min=> u v w /=; move/(ltr_trans _); apply. + move=> -> rax px0 rxb. + move/(@roots_on_same _ s): rxb; move/(_ (mem_rev _))=> rxb. + rewrite px0 (@roots_uniq p x b [::]) // (@roots_uniq p a x s) ?eqxx //=. + move: sxs; rewrite -[rcons _ _]revK rev_sorted rev_rcons. + by move/path_sorted; rewrite -rev_sorted revK. +case: rootsP p0=> // p0 rax sax _. +case/and3P=> hx hax; rewrite (eqP hax) in rax sax. +case: rootsP p0=> // p0 rxb sxb _. +case/andP=> px0 hxb; rewrite (eqP hxb) in rxb sxb. +rewrite [rcons _ _](@roots_uniq p a b) //; last first. + rewrite -[rcons _ _]revK rev_sorted rev_rcons /= path_min_sorted. + by rewrite -rev_sorted revK. + move=> y; rewrite mem_rev; rewrite -(eqP hxb). + by move/roots_in; move/itvP->. +move=> y; rewrite (itv_splitU2 hx) mem_rcons in_cons !andb_orl. +case hy: (y == x); first by rewrite (eqP hy) px0 orbT. +by rewrite rxb rax in_nil !orbF. +Qed. + +Section NeighborHood. + +Implicit Types a b : R. + +Implicit Types p : {poly R}. + +Definition next_root (p : {poly R}) x b := if p == 0 then x else head (maxr b x) (roots p x b). + +Lemma next_root0 : forall a b, next_root 0 a b = a. +Proof. by move=> *; rewrite /next_root eqxx. Qed. + +CoInductive next_root_spec (p : {poly R}) x b : bool -> R -> Type := +| NextRootSpec0 of p = 0 : next_root_spec p x b true x +| NextRootSpecRoot y of p != 0 & p.[y] = 0 & y \in `]x, b[ + & {in `]x, y[, forall z, ~~(root p z)} : next_root_spec p x b true y +| NextRootSpecNoRoot c of p != 0 & c = maxr b x + & {in `]x, b[, forall z, ~~(root p z)} : next_root_spec p x b (p.[c] == 0) c. + +Lemma next_rootP : forall (p : {poly R}) a b, next_root_spec p a b (p.[next_root p a b] == 0) (next_root p a b). +Proof. +move=> p a b; rewrite /next_root /=. +case hs: roots=> [|x s] /=. + case: (altP (p =P 0))=> p0. + by rewrite {2}p0 hornerC eqxx; constructor; rewrite p0. + by constructor=> // y hy; apply: (roots_nil p0 hs). +move/eqP: hs; rewrite roots_cons; case/and5P=> p0 hx; move/eqP=> rap rpx rx. +rewrite (negPf p0) (rootPt rpx); constructor=> //; first by move/eqP: rpx. +by move=> y hy /=; move/(roots_nil p0): (rap); apply. +Qed. + +Lemma next_root_in : forall p a b, next_root p a b \in `[a, maxr b a]. +Proof. +move=> p a b; case: next_rootP=> [p0|y np0 py0 hy _|c np0 hc _]. +* by rewrite bound_in_itv /= ler_maxr lerr orbT. +* by apply: subitvP hy=> /=; rewrite ler_maxr !lerr. +* by rewrite hc bound_in_itv /= ler_maxr lerr orbT. +Qed. + +Lemma next_root_gt : forall p a b, a < b -> p != 0 -> next_root p a b > a. +Proof. +move=> p a b ab np0; case: next_rootP=> [p0|y _ py0 hy _|c _ -> _]. +* by rewrite p0 eqxx in np0. +* by rewrite (itvP hy). +* by rewrite maxr_l // ltrW. +Qed. + +Lemma next_noroot : forall p a b, {in `]a, (next_root p a b)[, noroot p}. +Proof. +move=> p a b z; case: next_rootP; first by rewrite itv_xx. + by move=> y np0 py0 hy hp hz; rewrite (negPf (hp _ _)). +move=> c p0 -> hp hz; rewrite (negPf (hp _ _)) //. +by case: maxrP hz; last by rewrite itv_xx. +Qed. + +Lemma is_next_root : forall p a b x, next_root_spec p a b (root p x) x -> x = next_root p a b. +Proof. +move=> p a b x []; first by move->; rewrite /next_root eqxx. + move=> y; case: next_rootP; first by move->; rewrite eqxx. + move=> y' np0 py'0 hy' hp' _ py0 hy hp. + wlog: y y' hy' hy hp' hp py0 py'0 / y <= y'. + by case/orP: (ler_total y y')=> lyy' hw; [|symmetry]; apply: hw. + case: ltrgtP=> // hyy' _; move: (hp' y). + by rewrite rootE py0 eqxx inE /= (itvP hy) hyy'; move/(_ isT). + move=> c p0 ->; case: maxrP=> hab; last by rewrite itv_gte //= ltrW. + by move=> hpz _ py0 hy; move/hpz:hy; rewrite rootE py0 eqxx. +case: next_rootP=> //; first by move->; rewrite eqxx. + by move=> y np0 py0 hy _ c _ _; move/(_ _ hy); rewrite rootE py0 eqxx. +by move=> c _ -> _ c' _ ->. +Qed. + +Definition prev_root (p : {poly R}) a x := if p == 0 then x else last (minr a x) (roots p a x). + +Lemma prev_root0 : forall a b, prev_root 0 a b = b. +Proof. by move=> *; rewrite /prev_root eqxx. Qed. + +CoInductive prev_root_spec (p : {poly R}) a x : bool -> R -> Type := +| PrevRootSpec0 of p = 0 : prev_root_spec p a x true x +| PrevRootSpecRoot y of p != 0 & p.[y] = 0 & y \in`]a, x[ + & {in `]y, x[, forall z, ~~(root p z)} : prev_root_spec p a x true y +| PrevRootSpecNoRoot c of p != 0 & c = minr a x + & {in `]a, x[, forall z, ~~(root p z)} : prev_root_spec p a x (p.[c] == 0) c. + +Lemma prev_rootP : forall (p : {poly R}) a b, prev_root_spec p a b (p.[prev_root p a b] == 0) (prev_root p a b). +Proof. +move=> p a b; rewrite /prev_root /=. +move hs: (roots _ _ _)=> s. +case: (lastP s) hs=> {s} [|s x] hs /=. + case: (altP (p =P 0))=> p0. + by rewrite {2}p0 hornerC eqxx; constructor; rewrite p0. + by constructor=> // y hy; apply: (roots_nil p0 hs). +rewrite last_rcons; move/eqP: hs. +rewrite roots_rcons; case/and5P=> p0 hx; move/eqP=> rap rpx rx. +rewrite (negPf p0) (rootPt rpx); constructor=> //; first by move/eqP: rpx. +by move=> y hy /=; move/(roots_nil p0): (rap); apply. +Qed. + +Lemma prev_root_in : forall p a b, prev_root p a b \in `[minr a b, b]. +Proof. +move=> p a b; case: prev_rootP=> [p0|y np0 py0 hy _|c np0 hc _]. +* by rewrite bound_in_itv /= ler_minl lerr orbT. +* by apply: subitvP hy=> /=; rewrite ler_minl !lerr. +* by rewrite hc bound_in_itv /= ler_minl lerr orbT. +Qed. + +Lemma prev_noroot : forall p a b, {in `](prev_root p a b), b[, noroot p}. +Proof. +move=> p a b z; case: prev_rootP; first by rewrite itv_xx. + by move=> y np0 py0 hy hp hz; rewrite (negPf (hp _ _)). +move=> c np0 ->; case: minrP=> hab; last by rewrite itv_xx. +by move=> hp hz; rewrite (negPf (hp _ _)). +Qed. + +Lemma prev_root_lt : forall p a b, a < b -> p != 0 -> prev_root p a b < b. +Proof. +move=> p a b ab np0; case: prev_rootP=> [p0|y _ py0 hy _|c _ -> _]. +* by rewrite p0 eqxx in np0. +* by rewrite (itvP hy). +* by rewrite minr_l // ltrW. +Qed. + +Lemma is_prev_root : forall p a b x, prev_root_spec p a b (root p x) x -> x = prev_root p a b. +Proof. +move=> p a b x []; first by move->; rewrite /prev_root eqxx. + move=> y; case: prev_rootP; first by move->; rewrite eqxx. + move=> y' np0 py'0 hy' hp' _ py0 hy hp. + wlog: y y' hy' hy hp' hp py0 py'0 / y <= y'. + by case/orP: (ler_total y y')=> lyy' hw; [|symmetry]; apply: hw. + case: ltrgtP=> // hyy' _; move/implyP: (hp y'). + by rewrite rootE py'0 eqxx inE /= (itvP hy') hyy'. + by move=> c _ _ hpz _ py0 hy; move/hpz:hy; rewrite rootE py0 eqxx. +case: prev_rootP=> //; first by move->; rewrite eqxx. + move=> y ? py0 hy _ c _ ->; case: minrP hy=> hab; last first. + by rewrite itv_gte //= ltrW. + by move=> hy; move/(_ _ hy); rewrite rootE py0 eqxx. +by move=> c _ -> _ c' _ ->. +Qed. + +Definition neighpr p a b := `]a, (next_root p a b)[. + +Definition neighpl p a b := `](prev_root p a b), b[. + +Lemma neighpl_root : forall p a x, {in neighpl p a x, noroot p}. +Proof. exact: prev_noroot. Qed. + +Lemma sgr_neighplN : forall p a x, ~~root p x -> + {in neighpl p a x, forall y, (sgr p.[y] = sgr p.[x])}. +Proof. +rewrite /neighpl=> p a x nrpx /= y hy. +apply: (@polyrN0_itv `[y, x]); do ?by rewrite bound_in_itv /= (itvP hy). +move=> z; rewrite (@itv_splitU _ x false) ?itv_xx /=; last first. +(* Todo : Lemma itv_splitP *) + by rewrite bound_in_itv /= (itvP hy). +rewrite orbC => /predU1P[-> // | hz]. +rewrite (@prev_noroot _ a x) //. +by apply: subitvPl hz; rewrite /= (itvP hy). +Qed. + +Lemma sgr_neighpl_same : forall p a x, + {in neighpl p a x &, forall y z, (sgr p.[y] = sgr p.[z])}. +Proof. +by rewrite /neighpl=> p x b y z *; apply: (polyrN0_itv (@prev_noroot p x b)). +Qed. + +Lemma neighpr_root : forall p x b, {in neighpr p x b, noroot p}. +Proof. exact: next_noroot. Qed. + +Lemma sgr_neighprN : forall p x b, p.[x] != 0 -> + {in neighpr p x b, forall y, (sgr p.[y] = sgr p.[x])}. +Proof. +rewrite /neighpr=> p x b nrpx /= y hy; symmetry. +apply: (@polyrN0_itv `[x, y]); do ?by rewrite bound_in_itv /= (itvP hy). +move=> z; rewrite (@itv_splitU _ x true) ?itv_xx /=; last first. +(* Todo : Lemma itv_splitP *) + by rewrite bound_in_itv /= (itvP hy). +case/orP=> [|hz]; first by rewrite inE /=; move/eqP->. +rewrite (@next_noroot _ x b) //. +by apply: subitvPr hz; rewrite /= (itvP hy). +Qed. + +Lemma sgr_neighpr_same : forall p x b, + {in neighpr p x b &, forall y z, (sgr p.[y] = sgr p.[z])}. +Proof. +by rewrite /neighpl=> p x b y z *; apply: (polyrN0_itv (@next_noroot p x b)). +Qed. + +Lemma uniq_roots : forall a b p, uniq (roots p a b). +Proof. +move=> a b p; case p0: (p == 0); first by rewrite (eqP p0) roots0. +by apply: (@sorted_uniq _ <%R); [exact: ltr_trans | exact: ltrr|]. +Qed. + +Hint Resolve uniq_roots. + +Lemma in_roots : forall p a b, forall x : R, + (x \in roots p a b) = [&& root p x, x \in `]a, b[ & p != 0]. +Proof. +move=> p a b x; case: rootsP=> //=; first by rewrite in_nil !andbF. +by move=> p0 hr sr; rewrite andbT -hr andbC. +Qed. + +(* Todo : move to polyorder => need char 0 *) +Lemma gdcop_eq0 : forall p q, (gdcop p q == 0) = (q == 0) && (p != 0). +Proof. +move=> p q; case: (eqVneq q 0) => [-> | q0]. + rewrite gdcop0 /= eqxx /=. + by case: (eqVneq p 0) => [-> | pn0]; rewrite ?(negPf pn0) eqxx ?oner_eq0. +rewrite /gdcop; move: {-1}(size q) (leqnn (size q))=> k hk. +case: (eqVneq p 0) => [-> | p0]. + rewrite eqxx andbF; apply: negPf. + elim: k q q0 {hk} => [|k ihk] q q0 /=; first by rewrite eqxx oner_eq0. + case: ifP=> _ //. + apply: ihk; rewrite gcdp0 divpp ?q0 // polyC_eq0; exact: lc_expn_scalp_neq0. +rewrite p0 (negPf q0) /=; apply: negPf. +elim: k q q0 hk => [|k ihk] /= q q0 hk. + by move: hk q0; rewrite leqn0 size_poly_eq0; move->. +case: ifP=> cpq; first by rewrite (negPf q0). +apply: ihk. + rewrite divpN0; last by rewrite gcdp_eq0 negb_and q0. + by rewrite dvdp_leq // dvdp_gcdl. +rewrite -ltnS; apply: leq_trans hk; move: (dvdp_gcdl q p); rewrite dvdp_eq. +move/eqP=> eqq; move/(f_equal (fun x : {poly R} => size x)): (eqq). +rewrite size_scale; last exact: lc_expn_scalp_neq0. +have gcdn0 : gcdp q p != 0 by rewrite gcdp_eq0 negb_and q0. +have qqn0 : q %/ gcdp q p != 0. + apply: contraTneq q0; rewrite negbK => e. + move: (scaler_eq0 (lead_coef (gcdp q p) ^+ scalp q (gcdp q p)) q). + by rewrite (negPf (lc_expn_scalp_neq0 _ _)) /=; move<-; rewrite eqq e mul0r. +move->; rewrite size_mul //; case sgcd: (size (gcdp q p)) => [|n]. + by move/eqP: sgcd gcdn0; rewrite size_poly_eq0; move->. +case: n sgcd => [|n]; first by move/eqP; rewrite size_poly_eq1 gcdp_eqp1 cpq. +by rewrite addnS /= -{1}[size (_ %/ _)]addn0 ltn_add2l. +Qed. + +Lemma roots_mul : forall a b, a < b -> forall p q, + p != 0 -> q != 0 -> perm_eq (roots (p*q) a b) + (roots p a b ++ roots ((gdcop p q)) a b). +Proof. +move=> a b hab p q np0 nq0. +apply: uniq_perm_eq; first exact: uniq_roots. + rewrite cat_uniq ?uniq_roots andbT /=; apply/hasPn=> x /=. + move/root_roots; rewrite root_gdco //; case/andP=> _. + by rewrite in_roots !negb_and=> ->. +move=> x; rewrite mem_cat !in_roots root_gdco //. +rewrite rootM mulf_eq0 gdcop_eq0 negb_and. +case: (x \in `]_, _[); last by rewrite !andbF. +by rewrite negb_or !np0 !nq0 !andbT /=; do 2?case: root=> //=. +Qed. + +Lemma roots_mul_coprime : forall a b, a < b -> forall p q, + p != 0 -> q != 0 -> coprimep p q -> + perm_eq (roots (p * q) a b) + (roots p a b ++ roots q a b). +Proof. +move=> a b hab p q np0 nq0 cpq. +rewrite (perm_eq_trans (roots_mul hab np0 nq0)) //. +suff ->: roots (gdcop p q) a b = roots q a b by apply: perm_eq_refl. +case: gdcopP=> r rq hrp; move/(_ q (dvdpp _)). +rewrite coprimep_sym; move/(_ cpq)=> qr. +have erq : r %= q by rewrite /eqp rq qr. +(* Todo : relate eqp with roots *) +apply/roots_eq=> // [|x hx]; last exact: eqp_root. +by rewrite -size_poly_eq0 (eqp_size erq) size_poly_eq0. +Qed. + + +Lemma next_rootM : forall a b (p q : {poly R}), + next_root (p * q) a b = minr (next_root p a b) (next_root q a b). +Proof. +move=> a b p q; symmetry; apply: is_next_root. +wlog: p q / next_root p a b <= next_root q a b. + case: minrP=> hpq; first by move/(_ _ _ hpq); case: minrP hpq. + by move/(_ _ _ (ltrW hpq)); rewrite mulrC minrC; case: minrP hpq. +case: minrP=> //; case: next_rootP=> [|y np0 py0 hy|c np0 ->] hp hpq _. +* by rewrite hp mul0r root0; constructor. +* rewrite rootM; move/rootP:(py0)->; constructor=> //. + - by rewrite mulf_neq0 //; case: next_rootP hpq; rewrite // (itvP hy). + - by rewrite hornerM py0 mul0r. + - move=> z hz /=; rewrite rootM negb_or ?hp //. + by rewrite (@next_noroot _ a b) //; apply: subitvPr hz. +* case: (altP (q =P 0))=> q0. + move: hpq; rewrite q0 mulr0 root0 next_root0 ler_maxl lerr andbT. + by move=> hba; rewrite maxr_r //; constructor. + constructor=> //; first by rewrite mulf_neq0. + move=> z hz /=; rewrite rootM negb_or ?hp //. + rewrite (@next_noroot _ a b) //; apply: subitvPr hz=> /=. + by move: hpq; rewrite ler_maxl; case/andP. +Qed. + +Lemma neighpr_mul : forall a b p q, + (neighpr (p * q) a b) =i [predI (neighpr p a b) & (neighpr q a b)]. +Proof. +move=> a b p q x; rewrite inE /= !inE /= next_rootM. +by case: (a < x); rewrite // ltr_minr. +Qed. + +Lemma prev_rootM : forall a b (p q : {poly R}), + prev_root (p * q) a b = maxr (prev_root p a b) (prev_root q a b). +Proof. +move=> a b p q; symmetry; apply: is_prev_root. +wlog: p q / prev_root p a b >= prev_root q a b. + case: maxrP=> hpq; first by move/(_ _ _ hpq); case: maxrP hpq. + by move/(_ _ _ (ltrW hpq)); rewrite mulrC maxrC; case: maxrP hpq. +case: maxrP=> //; case: (@prev_rootP p)=> [|y np0 py0 hy|c np0 ->] hp hpq _. +* by rewrite hp mul0r root0; constructor. +* rewrite rootM; move/rootP:(py0)->; constructor=> //. + - by rewrite mulf_neq0 //; case: prev_rootP hpq; rewrite // (itvP hy). + - by rewrite hornerM py0 mul0r. + - move=> z hz /=; rewrite rootM negb_or ?hp //. + by rewrite (@prev_noroot _ a b) //; apply: subitvPl hz. +* case: (altP (q =P 0))=> q0. + move: hpq; rewrite q0 mulr0 root0 prev_root0 ler_minr lerr andbT. + by move=> hba; rewrite minr_r //; constructor. + constructor=> //; first by rewrite mulf_neq0. + move=> z hz /=; rewrite rootM negb_or ?hp //. + rewrite (@prev_noroot _ a b) //; apply: subitvPl hz=> /=. + by move: hpq; rewrite ler_minr; case/andP. +Qed. + +Lemma neighpl_mul : forall a b p q, + (neighpl (p * q) a b) =i [predI (neighpl p a b) & (neighpl q a b)]. +Proof. +move=> a b p q x; rewrite !inE /= prev_rootM. +by case: (x < b); rewrite // ltr_maxl !(andbT, andbF). +Qed. + +Lemma neighpr_wit : forall p x b, x < b -> p != 0 -> {y | y \in neighpr p x b}. +Proof. +move=> p x b xb; exists (mid x (next_root p x b)). +by rewrite mid_in_itv //= next_root_gt. +Qed. + +Lemma neighpl_wit : forall p a x, a < x -> p != 0 -> {y | y \in neighpl p a x}. +Proof. +move=> p a x xb; exists (mid (prev_root p a x) x). +by rewrite mid_in_itv //= prev_root_lt. +Qed. + +End NeighborHood. + +Section SignRight. + +Definition sgp_right (p : {poly R}) x := + let fix aux (p : {poly R}) n := + if n is n'.+1 + then if ~~ root p x + then sgr p.[x] + else aux p^`() n' + else 0 + in aux p (size p). + +Lemma sgp_right0 : forall x, sgp_right 0 x = 0. +Proof. by move=> x; rewrite /sgp_right size_poly0. Qed. + +Lemma sgr_neighpr : forall b p x, + {in neighpr p x b, forall y, (sgr p.[y] = sgp_right p x)}. +Proof. +move=> b p x. +elim: (size p) {-2}p (leqnn (size p))=> [|n ihn] {p} p. + rewrite leqn0 size_poly_eq0 /neighpr; move/eqP=> -> /=. + by move=>y; rewrite next_root0 itv_xx. +rewrite leq_eqVlt ltnS; case/orP; last exact: ihn. +move/eqP=> sp; rewrite /sgp_right sp /=. +case px0: root=> /=; last first. + move=> y; rewrite/neighpr => hy /=; symmetry. + apply: (@polyrN0_itv `[x, y]); do ?by rewrite bound_in_itv /= (itvP hy). + move=> z; rewrite (@itv_splitU _ x true) ?bound_in_itv /= ?(itvP hy) //. + rewrite itv_xx /=; case/predU1P=> hz; first by rewrite hz px0. + rewrite (@next_noroot p x b) //. + by apply: subitvPr hz=> /=; rewrite (itvP hy). +have <-: size p^`() = n by rewrite size_deriv sp. +rewrite -/(sgp_right p^`() x). +move=> y; rewrite /neighpr=> hy /=. +case: (@neighpr_wit (p * p^`()) x b)=> [||m hm]. +* case: next_rootP hy; first by rewrite itv_xx. + by move=> ? ? ?; move/itvP->. + by move=> c p0 -> _; case: maxrP=> _; rewrite ?itv_xx //; move/itvP->. +* rewrite mulf_neq0 //. + by move/eqP:sp; apply: contraTneq=> ->; rewrite size_poly0. + (* Todo : a lemma for this *) + move: (size_deriv p); rewrite sp /=; move/eqP; apply: contraTneq=> ->. + rewrite size_poly0; apply: contraTneq px0=> hn; rewrite -hn in sp. + by move/eqP: sp; case/size_poly1P=> c nc0 ->; rewrite rootC. +* move: hm; rewrite neighpr_mul /neighpr inE /=; case/andP=> hmp hmp'. + rewrite (polyrN0_itv _ hmp) //; last exact: next_noroot. + rewrite (@ders0r p x m (mid x m)) ?(eqP px0) ?mid_in_itv ?bound_in_itv //; + rewrite /= ?(itvP hmp) //; last first. + move=> u hu /=; rewrite (@next_noroot _ x b) //. + by apply: subitvPr hu; rewrite /= (itvP hmp'). + rewrite ihn ?size_deriv ?sp /neighpr //. + by rewrite (subitvP _ (@mid_in_itv _ true true _ _ _)) //= ?lerr (itvP hmp'). +Qed. + +Lemma sgr_neighpl : forall a p x, + {in neighpl p a x, forall y, + (sgr p.[y] = (-1) ^+ (odd (\mu_x p)) * sgp_right p x) + }. +Proof. +move=> a p x. +elim: (size p) {-2}p (leqnn (size p))=> [|n ihn] {p} p. + rewrite leqn0 size_poly_eq0 /neighpl; move/eqP=> -> /=. + by move=>y; rewrite prev_root0 itv_xx. +rewrite leq_eqVlt ltnS; case/orP; last exact: ihn. +move/eqP=> sp; rewrite /sgp_right sp /=. +case px0: root=> /=; last first. + move=> y; rewrite/neighpl => hy /=; symmetry. + move: (negbT px0); rewrite -mu_gt0; last first. + by apply: contraFN px0; move/eqP->; rewrite rootC. + rewrite -leqNgt leqn0; move/eqP=> -> /=; rewrite expr0 mul1r. + symmetry; apply: (@polyrN0_itv `[y, x]); + do ?by rewrite bound_in_itv /= (itvP hy). + move=> z; rewrite (@itv_splitU _ x false) ?bound_in_itv /= ?(itvP hy) //. + rewrite itv_xx /= orbC; case/predU1P=> hz; first by rewrite hz px0. + rewrite (@prev_noroot p a x) //. + by apply: subitvPl hz=> /=; rewrite (itvP hy). +have <-: size p^`() = n by rewrite size_deriv sp. +rewrite -/(sgp_right p^`() x). +move=> y; rewrite /neighpl=> hy /=. +case: (@neighpl_wit (p * p^`()) a x)=> [||m hm]. +* case: prev_rootP hy; first by rewrite itv_xx. + by move=> ? ? ?; move/itvP->. + by move=> c p0 -> _; case: minrP=> _; rewrite ?itv_xx //; move/itvP->. +* rewrite mulf_neq0 //. + by move/eqP:sp; apply: contraTneq=> ->; rewrite size_poly0. + (* Todo : a lemma for this *) + move: (size_deriv p); rewrite sp /=; move/eqP; apply: contraTneq=> ->. + rewrite size_poly0; apply: contraTneq px0=> hn; rewrite -hn in sp. + by move/eqP: sp; case/size_poly1P=> c nc0 ->; rewrite rootC. +* move: hm; rewrite neighpl_mul /neighpl inE /=; case/andP=> hmp hmp'. + rewrite (polyrN0_itv _ hmp) //; last exact: prev_noroot. + rewrite (@ders0l p m x (mid m x)) ?(eqP px0) ?mid_in_itv ?bound_in_itv //; + rewrite /= ?(itvP hmp) //; last first. + move=> u hu /=; rewrite (@prev_noroot _ a x) //. + by apply: subitvPl hu; rewrite /= (itvP hmp'). + rewrite ihn ?size_deriv ?sp /neighpl //; last first. + by rewrite (subitvP _ (@mid_in_itv _ true true _ _ _)) //= ?lerr (itvP hmp'). + rewrite mu_deriv // odd_sub ?mu_gt0 //=; last by rewrite -size_poly_eq0 sp. + by rewrite signr_addb /= mulrN1 mulNr opprK. +Qed. + +Lemma sgp_right_deriv : forall (p : {poly R}) x, root p x -> + sgp_right p x = sgp_right (p^`()) x. +Proof. +move=> p; elim: (size p) {-2}p (erefl (size p)) => {p} [p|sp hp p hsp x]. + by move/eqP; rewrite size_poly_eq0; move/eqP=> -> x _; rewrite derivC. +by rewrite /sgp_right size_deriv hsp /= => ->. +Qed. + +Lemma sgp_rightNroot : forall (p : {poly R}) x, + ~~ root p x -> sgp_right p x = sgr p.[x]. +Proof. +move=> p x nrpx; rewrite /sgp_right; case hsp: (size _)=> [|sp]. + by move/eqP:hsp; rewrite size_poly_eq0; move/eqP->; rewrite hornerC sgr0. +by rewrite nrpx. +Qed. + +Lemma sgp_right_mul : forall p q x, + sgp_right (p * q) x = sgp_right p x * sgp_right q x. +Proof. +move=> p q x. +case: (altP (q =P 0))=> q0; first by rewrite q0 /sgp_right !(size_poly0,mulr0). +case: (altP (p =P 0))=> p0; first by rewrite p0 /sgp_right !(size_poly0,mul0r). +case: (@neighpr_wit (p * q) x (1 + x))=> [||m hpq]; do ?by rewrite mulf_neq0. + by rewrite ltr_spaddl ?ltr01. +rewrite -(@sgr_neighpr (1 + x) _ _ m) //. +move: hpq; rewrite neighpr_mul inE /=; case/andP=> hp hq. +by rewrite hornerM sgrM !(@sgr_neighpr (1 + x) _ x) /neighpr. +Qed. + +Lemma sgp_right_scale c p x : sgp_right (c *: p) x = sgr c * sgp_right p x. +Proof. +case c0: (c == 0); first by rewrite (eqP c0) scale0r sgr0 mul0r sgp_right0. +by rewrite -mul_polyC sgp_right_mul sgp_rightNroot ?hornerC ?rootC ?c0. +Qed. + +Lemma sgp_right_square : forall p x, p != 0 -> sgp_right p x * sgp_right p x = 1. +Proof. +move=> p x np0; case: (@neighpr_wit p x (1 + x))=> [||m hpq] //. + by rewrite ltr_spaddl ?ltr01. +rewrite -(@sgr_neighpr (1 + x) _ _ m) //. +by rewrite -expr2 sqr_sg (@next_noroot _ x (1 + x)). +Qed. + +Lemma sgp_right_rec p x : sgp_right p x = + if p == 0 then 0 else + if ~~ root p x then sgr p.[x] + else sgp_right p^`() x. +Proof. +rewrite /sgp_right; case hs: size=> [|s]; rewrite -size_poly_eq0 hs //=. +by rewrite size_deriv hs. +Qed. + +Lemma sgp_right_addp0 : forall (p q : {poly R}) x, q != 0 -> + (\mu_x p > \mu_x q)%N -> sgp_right (p + q) x = sgp_right q x. +Proof. +move=> p q x nq0; move hm: (\mu_x q)=> m. +elim: m p q nq0 hm => [|mq ihmq] p q nq0 hmq; case hmp: (\mu_x p)=> // [mp]; + do[ + rewrite ltnS=> hm; + rewrite sgp_right_rec {1}addrC; + rewrite GRing.Theory.addr_eq0]. (* Todo : fix this ! *) + case: (altP (_ =P _))=> hqp. + move: (nq0); rewrite {1}hqp oppr_eq0=> np0. + rewrite sgp_right_rec (negPf nq0) -mu_gt0 // hmq /=. + apply/eqP; rewrite eq_sym hqp hornerN sgrN. + by rewrite oppr_eq0 sgr_eq0 -[_ == _]mu_gt0 ?hmp. + rewrite rootE hornerD. + have ->: p.[x] = 0. + apply/eqP; rewrite -[_ == _]mu_gt0 ?hmp //. + by move/eqP: hmp; apply: contraTneq=> ->; rewrite mu0. + symmetry; rewrite sgp_right_rec (negPf nq0) add0r. + by rewrite -/(root _ _) -mu_gt0 // hmq. +case: (altP (_ =P _))=> hqp. + by move: hm; rewrite -ltnS -hmq -hmp hqp mu_opp ltnn. +have px0: p.[x] = 0. + apply/rootP; rewrite -mu_gt0 ?hmp //. + by move/eqP: hmp; apply: contraTneq=> ->; rewrite mu0. +have qx0: q.[x] = 0 by apply/rootP; rewrite -mu_gt0 ?hmq //. +rewrite rootE hornerD px0 qx0 add0r eqxx /=; symmetry. +rewrite sgp_right_rec rootE (negPf nq0) qx0 eqxx /=. +rewrite derivD ihmq // ?mu_deriv ?rootE ?px0 ?qx0 ?hmp ?hmq ?subn1 //. +apply: contra nq0; rewrite -size_poly_eq0 size_deriv. +case hsq: size=> [|sq] /=. + by move/eqP: hsq; rewrite size_poly_eq0. +move/eqP=> sq0; move/eqP: hsq qx0; rewrite sq0; case/size_poly1P=> c c0 ->. +by rewrite hornerC; move/eqP; rewrite (negPf c0). +Qed. + +End SignRight. + +(* redistribute some of what follows with in the file *) +Section PolyRCFPdiv. +Import Pdiv.Ring Pdiv.ComRing. + +Lemma sgp_rightc (x c : R) : sgp_right c%:P x = sgr c. +Proof. +rewrite /sgp_right size_polyC. +case cn0: (_ == 0)=> /=; first by rewrite (eqP cn0) sgr0. +by rewrite rootC hornerC cn0. +Qed. + +Lemma sgp_right_eq0 (x : R) p : (sgp_right p x == 0) = (p == 0). +Proof. +case: (altP (p =P 0))=> p0; first by rewrite p0 sgp_rightc sgr0 eqxx. +rewrite /sgp_right. +elim: (size p) {-2}p (erefl (size p)) p0=> {p} [|sp ihsp] p esp p0. + by move/eqP:esp; rewrite size_poly_eq0 (negPf p0). +rewrite esp /=; case px0: root=> //=; rewrite ?sgr_cp0 ?px0//. +have hsp: sp = size p^`() by rewrite size_deriv esp. +rewrite hsp ihsp // -size_poly_eq0 -hsp; apply/negP; move/eqP=> sp0. +move: px0; rewrite root_factor_theorem. +by move=> /rdvdp_leq // /(_ p0); rewrite size_XsubC esp sp0. +Qed. + +(* :TODO: backport to polydiv *) +Lemma lc_expn_rscalp_neq0 (p q : {poly R}): lead_coef q ^+ rscalp p q != 0. +Proof. +case: (eqVneq q 0) => [->|nzq]; last by rewrite expf_neq0 ?lead_coef_eq0. +by rewrite /rscalp unlock /= eqxx /= expr0 oner_neq0. +Qed. +Notation lcn_neq0 := lc_expn_rscalp_neq0. + +Lemma sgp_right_mod : forall p q x, (\mu_x p < \mu_x q)%N -> + sgp_right (rmodp p q) x = (sgr (lead_coef q)) ^+ (rscalp p q) * sgp_right p x. +Proof. +move=> p q x mupq; case p0: (p == 0). + by rewrite (eqP p0) rmod0p !sgp_right0 mulr0. +have qn0 : q != 0. + by apply/negP; move/eqP=> q0; rewrite q0 mu0 ltn0 in mupq. +move/eqP: (rdivp_eq q p). +rewrite eq_sym (can2_eq (addKr _ ) (addNKr _)); move/eqP->. +case qpq0: ((rdivp p q) == 0). + by rewrite (eqP qpq0) mul0r oppr0 add0r sgp_right_scale // sgrX. +rewrite sgp_right_addp0 ?sgp_right_scale ?sgrX //. + by rewrite scaler_eq0 negb_or p0 lcn_neq0. +rewrite mu_mulC ?lcn_neq0 // mu_opp mu_mul ?mulf_neq0 ?qpq0 //. +by rewrite ltn_addl. +Qed. + +Lemma rootsC (a b c : R) : roots c%:P a b = [::]. +Proof. +case: (altP (c =P 0))=> hc; first by rewrite hc roots0. +by apply: no_root_roots=> x hx; rewrite rootC. +Qed. + +Lemma rootsZ a b c p : c != 0 -> roots (c *: p) a b = roots p a b. +Proof. +have [->|p_neq0 c_neq0] := eqVneq p 0; first by rewrite scaler0. +by apply/roots_eq => [||x axb]; rewrite ?scaler_eq0 ?(negPf c_neq0) ?rootZ. +Qed. + +Lemma root_bigrgcd (x : R) (ps : seq {poly R}) : + root (\big[(@rgcdp _)/0]_(p <- ps) p) x = all (root^~ x) ps. +Proof. +elim: ps; first by rewrite big_nil root0. +move=> p ps ihp; rewrite big_cons /=. +by rewrite (eqp_root (eqp_rgcd_gcd _ _)) root_gcd ihp. +Qed. + +Definition rootsR p := roots p (- cauchy_bound p) (cauchy_bound p). + +Lemma roots_on_rootsR p : p != 0 -> roots_on p `]-oo, +oo[ (rootsR p). +Proof. +rewrite /rootsR => p_neq0 x /=; rewrite -roots_on_roots // andbC. +by have [/(cauchy_boundP p_neq0) /=|//] := altP rootP; rewrite ltr_norml. +Qed. + +Lemma rootsR0 : rootsR 0 = [::]. Proof. exact: roots0. Qed. + +Lemma rootsRC c : rootsR c%:P = [::]. Proof. exact: rootsC. Qed. + +Lemma rootsRP p a b : + {in `]-oo, a], noroot p} -> {in `[b , +oo[, noroot p} -> + roots p a b = rootsR p. +Proof. +move=> rpa rpb. +have [->|p_neq0] := eqVneq p 0; first by rewrite rootsR0 roots0. +apply: (eq_sorted_irr (@ltr_trans _)); rewrite ?sorted_roots // => x. +rewrite -roots_on_rootsR -?roots_on_roots //=. +have [rpx|] := boolP (root _ _); rewrite ?(andbT, andbF) //. +apply: contraLR rpx; rewrite inE negb_and -!lerNgt. +by move=> /orP[/rpa //|xb]; rewrite rpb // inE andbT. +Qed. + +Lemma sgp_pinftyP x (p : {poly R}) : {in `[x , +oo[, noroot p} -> + {in `[x, +oo[, forall y, sgr p.[y] = sgp_pinfty p}. +Proof. +rewrite /sgp_pinfty; wlog lp_gt0 : x p / lead_coef p > 0 => [hwlog|rpx y Hy]. + have [|/(hwlog x p) //|/eqP] := ltrgtP (lead_coef p) 0; last first. + by rewrite lead_coef_eq0 => /eqP -> ? ? ?; rewrite lead_coef0 horner0. + rewrite -[p]opprK lead_coef_opp oppr_cp0 => /(hwlog x _) Hp HNp y Hy. + by rewrite hornerN !sgrN Hp => // z /HNp; rewrite rootN. +have [z Hz] := poly_pinfty_gt_lc lp_gt0. +have {Hz} Hz u : u \in `[z, +oo[ -> Num.sg p.[u] = 1. + by rewrite inE andbT => /Hz pu_ge1; rewrite gtr0_sg // (ltr_le_trans lp_gt0). +rewrite (@polyrN0_itv _ _ rpx (maxr y z)) ?inE ?ler_maxr ?(itvP Hy) //. +by rewrite Hz ?gtr0_sg // inE ler_maxr lerr orbT. +Qed. + +Lemma sgp_minftyP x (p : {poly R}) : {in `]-oo, x], noroot p} -> + {in `]-oo, x], forall y, sgr p.[y] = sgp_minfty p}. +Proof. +move=> rpx y Hy; rewrite -sgp_pinfty_sym. +have -> : p.[y] = (p \Po -'X).[-y] by rewrite horner_comp !hornerE opprK. +apply: (@sgp_pinftyP (- x)); last by rewrite inE ler_opp2 (itvP Hy). +by move=> z Hz /=; rewrite root_comp !hornerE rpx // inE ler_oppl (itvP Hz). +Qed. + +Lemma odd_poly_root (p : {poly R}) : ~~ odd (size p) -> {x | root p x}. +Proof. +move=> size_p_even. +have [->|p_neq0] := altP (p =P 0); first by exists 0; rewrite root0. +pose b := cauchy_bound p. +have [] := @ivt_sign p (-b) b; last by move=> x _; exists x. + by rewrite ge0_cp // ?cauchy_bound_ge0. +rewrite (sgp_minftyP (le_cauchy_bound p_neq0)) ?bound_in_itv //. +rewrite (sgp_pinftyP (ge_cauchy_bound p_neq0)) ?bound_in_itv //. +move: size_p_even; rewrite polySpred //= negbK /sgp_minfty -signr_odd => ->. +by rewrite expr1 mulN1r sgrN mulNr -expr2 sqr_sg lead_coef_eq0 p_neq0. +Qed. +End PolyRCFPdiv. + +End PolyRCF. |
