diff options
| author | Enrico Tassi | 2015-03-09 11:07:53 +0100 |
|---|---|---|
| committer | Enrico Tassi | 2015-03-09 11:24:38 +0100 |
| commit | fc84c27eac260dffd8f2fb1cb56d599f1e3486d9 (patch) | |
| tree | c16205f1637c80833a4c4598993c29fa0fd8c373 /mathcomp/real_closed/complex.v | |
Initial commit
Diffstat (limited to 'mathcomp/real_closed/complex.v')
| -rw-r--r-- | mathcomp/real_closed/complex.v | 1252 |
1 files changed, 1252 insertions, 0 deletions
diff --git a/mathcomp/real_closed/complex.v b/mathcomp/real_closed/complex.v new file mode 100644 index 0000000..1c26a9d --- /dev/null +++ b/mathcomp/real_closed/complex.v @@ -0,0 +1,1252 @@ +(* (c) Copyright Microsoft Corporation and Inria. All rights reserved. *) +Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice fintype. +Require Import bigop ssralg ssrint div ssrnum rat poly closed_field polyrcf. +Require Import matrix mxalgebra tuple mxpoly zmodp binomial realalg. + +(**********************************************************************) +(* This files defines the extension R[i] of a real field R, *) +(* and provide it a structure of numeric field with a norm operator. *) +(* When R is a real closed field, it also provides a structure of *) +(* algebraically closed field for R[i], using a proof by Derksen *) +(* (cf comments below, thanks to Pierre Lairez for finding the paper) *) +(**********************************************************************) + +Import GRing.Theory Num.Theory. + +Set Implicit Arguments. +Unset Strict Implicit. +Unset Printing Implicit Defensive. + +Local Open Scope ring_scope. + +Reserved Notation "x +i* y" + (at level 40, left associativity, format "x +i* y"). +Reserved Notation "x -i* y" + (at level 40, left associativity, format "x -i* y"). +Reserved Notation "R [i]" + (at level 2, left associativity, format "R [i]"). + +Local Notation sgr := Num.sg. +Local Notation sqrtr := Num.sqrt. + +CoInductive complex (R : Type) : Type := Complex { Re : R; Im : R }. + +Definition real_complex_def (F : ringType) (phF : phant F) (x : F) := + Complex x 0. +Notation real_complex F := (@real_complex_def _ (Phant F)). +Notation "x %:C" := (real_complex _ x) + (at level 2, left associativity, format "x %:C") : ring_scope. +Notation "x +i* y" := (Complex x y) : ring_scope. +Notation "x -i* y" := (Complex x (- y)) : ring_scope. +Notation "x *i " := (Complex 0 x) (at level 8, format "x *i") : ring_scope. +Notation "''i'" := (Complex 0 1) : ring_scope. +Notation "R [i]" := (complex R) + (at level 2, left associativity, format "R [i]"). + +Module ComplexEqChoice. +Section ComplexEqChoice. + +Variable R : Type. + +Definition sqR_of_complex (x : R[i]) := let: a +i* b := x in [::a; b]. +Definition complex_of_sqR (x : seq R) := + if x is [:: a; b] then Some (a +i* b) else None. + +Lemma complex_of_sqRK : pcancel sqR_of_complex complex_of_sqR. +Proof. by case. Qed. + +End ComplexEqChoice. +End ComplexEqChoice. + +Definition complex_eqMixin (R : eqType) := + PcanEqMixin (@ComplexEqChoice.complex_of_sqRK R). +Definition complex_choiceMixin (R : choiceType) := + PcanChoiceMixin (@ComplexEqChoice.complex_of_sqRK R). +Definition complex_countMixin (R : countType) := + PcanCountMixin (@ComplexEqChoice.complex_of_sqRK R). + +Canonical Structure complex_eqType (R : eqType) := + EqType R[i] (complex_eqMixin R). +Canonical Structure complex_choiceType (R : choiceType) := + ChoiceType R[i] (complex_choiceMixin R). +Canonical Structure complex_countType (R : countType) := + CountType R[i] (complex_countMixin R). + +Lemma eq_complex : forall (R : eqType) (x y : complex R), + (x == y) = (Re x == Re y) && (Im x == Im y). +Proof. +move=> R [a b] [c d] /=. +apply/eqP/andP; first by move=> [-> ->]; split. +by case; move/eqP->; move/eqP->. +Qed. + +Lemma complexr0 : forall (R : ringType) (x : R), x +i* 0 = x%:C. Proof. by []. Qed. + +Module ComplexField. +Section ComplexField. + +Variable R : rcfType. +Local Notation C := R[i]. +Local Notation C0 := ((0 : R)%:C). +Local Notation C1 := ((1 : R)%:C). + +Definition addc (x y : R[i]) := let: a +i* b := x in let: c +i* d := y in + (a + c) +i* (b + d). +Definition oppc (x : R[i]) := let: a +i* b := x in (- a) +i* (- b). + +Lemma addcC : commutative addc. +Proof. by move=> [a b] [c d] /=; congr (_ +i* _); rewrite addrC. Qed. +Lemma addcA : associative addc. +Proof. by move=> [a b] [c d] [e f] /=; rewrite !addrA. Qed. + +Lemma add0c : left_id C0 addc. +Proof. by move=> [a b] /=; rewrite !add0r. Qed. + +Lemma addNc : left_inverse C0 oppc addc. +Proof. by move=> [a b] /=; rewrite !addNr. Qed. + +Definition complex_ZmodMixin := ZmodMixin addcA addcC add0c addNc. +Canonical Structure complex_ZmodType := ZmodType R[i] complex_ZmodMixin. + +Definition mulc (x y : R[i]) := let: a +i* b := x in let: c +i* d := y in + ((a * c) - (b * d)) +i* ((a * d) + (b * c)). + +Lemma mulcC : commutative mulc. +Proof. +move=> [a b] [c d] /=. +by rewrite [c * b + _]addrC ![_ * c]mulrC ![_ * d]mulrC. +Qed. + +Lemma mulcA : associative mulc. +Proof. +move=> [a b] [c d] [e f] /=. +rewrite !mulrDr !mulrDl !mulrN !mulNr !mulrA !opprD -!addrA. +by congr ((_ + _) +i* (_ + _)); rewrite !addrA addrAC; + congr (_ + _); rewrite addrC. +Qed. + +Definition invc (x : R[i]) := let: a +i* b := x in let n2 := (a ^+ 2 + b ^+ 2) in + (a / n2) -i* (b / n2). + +Lemma mul1c : left_id C1 mulc. +Proof. by move=> [a b] /=; rewrite !mul1r !mul0r subr0 addr0. Qed. + +Lemma mulc_addl : left_distributive mulc addc. +Proof. +move=> [a b] [c d] [e f] /=; rewrite !mulrDl !opprD -!addrA. +by congr ((_ + _) +i* (_ + _)); rewrite addrCA. +Qed. + +Lemma nonzero1c : C1 != C0. Proof. by rewrite eq_complex /= oner_eq0. Qed. + +Definition complex_comRingMixin := + ComRingMixin mulcA mulcC mul1c mulc_addl nonzero1c. +Canonical Structure complex_Ring := + Eval hnf in RingType R[i] complex_comRingMixin. +Canonical Structure complex_comRing := Eval hnf in ComRingType R[i] mulcC. + +Lemma mulVc : forall x, x != C0 -> mulc (invc x) x = C1. +Proof. +move=> [a b]; rewrite eq_complex => /= hab; rewrite !mulNr opprK. +rewrite ![_ / _ * _]mulrAC [b * a]mulrC subrr complexr0 -mulrDl mulfV //. +by rewrite paddr_eq0 -!expr2 ?expf_eq0 ?sqr_ge0. +Qed. + +Lemma invc0 : invc C0 = C0. Proof. by rewrite /= !mul0r oppr0. Qed. + +Definition ComplexFieldUnitMixin := FieldUnitMixin mulVc invc0. +Canonical Structure complex_unitRing := + Eval hnf in UnitRingType C ComplexFieldUnitMixin. +Canonical Structure complex_comUnitRing := + Eval hnf in [comUnitRingType of R[i]]. + +Lemma field_axiom : GRing.Field.mixin_of complex_unitRing. +Proof. by []. Qed. + +Definition ComplexFieldIdomainMixin := (FieldIdomainMixin field_axiom). +Canonical Structure complex_iDomain := + Eval hnf in IdomainType R[i] (FieldIdomainMixin field_axiom). +Canonical Structure complex_fieldMixin := FieldType R[i] field_axiom. + +Ltac simpc := do ? + [ rewrite -[(_ +i* _) - (_ +i* _)]/(_ +i* _) + | rewrite -[(_ +i* _) + (_ +i* _)]/(_ +i* _) + | rewrite -[(_ +i* _) * (_ +i* _)]/(_ +i* _)]. + +Lemma real_complex_is_rmorphism : rmorphism (real_complex R). +Proof. +split; [|split=> //] => a b /=; simpc; first by rewrite subrr. +by rewrite !mulr0 !mul0r addr0 subr0. +Qed. + +Canonical Structure real_complex_rmorphism := + RMorphism real_complex_is_rmorphism. +Canonical Structure real_complex_additive := + Additive real_complex_is_rmorphism. + +Lemma Re_is_additive : additive (@Re R). +Proof. by case=> a1 b1; case=> a2 b2. Qed. + +Canonical Structure Re_additive := Additive Re_is_additive. + +Lemma Im_is_additive : additive (@Im R). +Proof. by case=> a1 b1; case=> a2 b2. Qed. + +Canonical Structure Im_additive := Additive Im_is_additive. + +Definition lec (x y : R[i]) := + let: a +i* b := x in let: c +i* d := y in + (d == b) && (a <= c). + +Definition ltc (x y : R[i]) := + let: a +i* b := x in let: c +i* d := y in + (d == b) && (a < c). + +Definition normc (x : R[i]) : R := + let: a +i* b := x in sqrtr (a ^+ 2 + b ^+ 2). + +Notation normC x := (normc x)%:C. + +Lemma ltc0_add : forall x y, ltc 0 x -> ltc 0 y -> ltc 0 (x + y). +Proof. +move=> [a b] [c d] /= /andP [/eqP-> ha] /andP [/eqP-> hc]. +by rewrite addr0 eqxx addr_gt0. +Qed. + +Lemma eq0_normc x : normc x = 0 -> x = 0. +Proof. +case: x => a b /= /eqP; rewrite sqrtr_eq0 ler_eqVlt => /orP [|]; last first. + by rewrite ltrNge addr_ge0 ?sqr_ge0. +by rewrite paddr_eq0 ?sqr_ge0 ?expf_eq0 //= => /andP[/eqP -> /eqP ->]. +Qed. + +Lemma eq0_normC x : normC x = 0 -> x = 0. Proof. by case=> /eq0_normc. Qed. + +Lemma ge0_lec_total x y : lec 0 x -> lec 0 y -> lec x y || lec y x. +Proof. +move: x y => [a b] [c d] /= /andP[/eqP -> a_ge0] /andP[/eqP -> c_ge0]. +by rewrite eqxx ler_total. +Qed. + +(* :TODO: put in ssralg ? *) +Lemma exprM (a b : R) : (a * b) ^+ 2 = a ^+ 2 * b ^+ 2. +Proof. by rewrite mulrACA. Qed. + +Lemma normcM x y : normc (x * y) = normc x * normc y. +Proof. +move: x y => [a b] [c d] /=; rewrite -sqrtrM ?addr_ge0 ?sqr_ge0 //. +rewrite sqrrB sqrrD mulrDl !mulrDr -!exprM. +rewrite mulrAC [b * d]mulrC !mulrA. +suff -> : forall (u v w z t : R), (u - v + w) + (z + v + t) = u + w + (z + t). + by rewrite addrAC !addrA. +by move=> u v w z t; rewrite [_ - _ + _]addrAC [z + v]addrC !addrA addrNK. +Qed. + +Lemma normCM x y : normC (x * y) = normC x * normC y. +Proof. by rewrite -rmorphM normcM. Qed. + +Lemma subc_ge0 x y : lec 0 (y - x) = lec x y. +Proof. by move: x y => [a b] [c d] /=; simpc; rewrite subr_ge0 subr_eq0. Qed. + +Lemma lec_def x y : lec x y = (normC (y - x) == y - x). +Proof. +rewrite -subc_ge0; move: (_ - _) => [a b]; rewrite eq_complex /= eq_sym. +have [<- /=|_] := altP eqP; last by rewrite andbF. +by rewrite [0 ^+ _]mul0r addr0 andbT sqrtr_sqr ger0_def. +Qed. + +Lemma ltc_def x y : ltc x y = (y != x) && lec x y. +Proof. +move: x y => [a b] [c d] /=; simpc; rewrite eq_complex /=. +by have [] := altP eqP; rewrite ?(andbF, andbT) //= ltr_def. +Qed. + +Lemma lec_normD x y : lec (normC (x + y)) (normC x + normC y). +Proof. +move: x y => [a b] [c d] /=; simpc; rewrite addr0 eqxx /=. +rewrite -(@ler_pexpn2r _ 2) -?topredE /= ?(ler_paddr, sqrtr_ge0) //. +rewrite [X in _ <= X] sqrrD ?sqr_sqrtr; + do ?by rewrite ?(ler_paddr, sqrtr_ge0, sqr_ge0, mulr_ge0) //. +rewrite -addrA addrCA (monoRL (addrNK _) (ler_add2r _)) !sqrrD. +set u := _ *+ 2; set v := _ *+ 2. +rewrite [a ^+ _ + _ + _]addrAC [b ^+ _ + _ + _]addrAC -addrA. +rewrite [u + _] addrC [X in _ - X]addrAC [b ^+ _ + _]addrC. +rewrite [u]lock [v]lock !addrA; set x := (a ^+ 2 + _ + _ + _). +rewrite -addrA addrC addKr -!lock addrC. +have [huv|] := ger0P (u + v); last first. + by move=> /ltrW /ler_trans -> //; rewrite pmulrn_lge0 // mulr_ge0 ?sqrtr_ge0. +rewrite -(@ler_pexpn2r _ 2) -?topredE //=; last first. + by rewrite ?(pmulrn_lge0, mulr_ge0, sqrtr_ge0) //. +rewrite -mulr_natl !exprM !sqr_sqrtr ?(ler_paddr, sqr_ge0) //. +rewrite -mulrnDl -mulr_natl !exprM ler_pmul2l ?exprn_gt0 ?ltr0n //. +rewrite sqrrD mulrDl !mulrDr -!exprM addrAC. +rewrite [_ + (b * d) ^+ 2]addrC [X in _ <= X]addrAC -!addrA !ler_add2l. +rewrite mulrAC mulrA -mulrA mulrACA mulrC. +by rewrite -subr_ge0 addrAC -sqrrB sqr_ge0. +Qed. + +Definition complex_POrderedMixin := NumMixin lec_normD ltc0_add eq0_normC + ge0_lec_total normCM lec_def ltc_def. +Canonical Structure complex_numDomainType := + NumDomainType R[i] complex_POrderedMixin. + +End ComplexField. +End ComplexField. + +Canonical complex_ZmodType (R : rcfType) := + ZmodType R[i] (ComplexField.complex_ZmodMixin R). +Canonical complex_Ring (R : rcfType) := + Eval hnf in RingType R[i] (ComplexField.complex_comRingMixin R). +Canonical complex_comRing (R : rcfType) := + Eval hnf in ComRingType R[i] (@ComplexField.mulcC R). +Canonical complex_unitRing (R : rcfType) := + Eval hnf in UnitRingType R[i] (ComplexField.ComplexFieldUnitMixin R). +Canonical complex_comUnitRing (R : rcfType) := + Eval hnf in [comUnitRingType of R[i]]. +Canonical complex_iDomain (R : rcfType) := + Eval hnf in IdomainType R[i] (FieldIdomainMixin (@ComplexField.field_axiom R)). +Canonical complex_fieldType (R : rcfType) := + FieldType R[i] (@ComplexField.field_axiom R). +Canonical complex_numDomainType (R : rcfType) := + NumDomainType R[i] (ComplexField.complex_POrderedMixin R). +Canonical complex_numFieldType (R : rcfType) := + [numFieldType of complex R]. + +Canonical ComplexField.real_complex_rmorphism. +Canonical ComplexField.real_complex_additive. +Canonical ComplexField.Re_additive. +Canonical ComplexField.Im_additive. + +Definition conjc {R : ringType} (x : R[i]) := let: a +i* b := x in a -i* b. +Notation "x ^*" := (conjc x) (at level 2, format "x ^*"). + +Ltac simpc := do ? + [ rewrite -[(_ +i* _) - (_ +i* _)]/(_ +i* _) + | rewrite -[(_ +i* _) + (_ +i* _)]/(_ +i* _) + | rewrite -[(_ +i* _) * (_ +i* _)]/(_ +i* _) + | rewrite -[(_ +i* _) <= (_ +i* _)]/((_ == _) && (_ <= _)) + | rewrite -[(_ +i* _) < (_ +i* _)]/((_ == _) && (_ < _)) + | rewrite -[`|_ +i* _|]/(sqrtr (_ + _))%:C + | rewrite (mulrNN, mulrN, mulNr, opprB, opprD, mulr0, mul0r, + subr0, sub0r, addr0, add0r, mulr1, mul1r, subrr, opprK, oppr0, + eqxx) ]. + + +Section ComplexTheory. + +Variable R : rcfType. + +Lemma ReiNIm : forall x : R[i], Re (x * 'i) = - Im x. +Proof. by case=> a b; simpc. Qed. + +Lemma ImiRe : forall x : R[i], Im (x * 'i) = Re x. +Proof. by case=> a b; simpc. Qed. + +Lemma complexE x : x = (Re x)%:C + 'i * (Im x)%:C :> R[i]. +Proof. by case: x => *; simpc. Qed. + +Lemma real_complexE x : x%:C = x +i* 0 :> R[i]. Proof. done. Qed. + +Lemma sqr_i : 'i ^+ 2 = -1 :> R[i]. +Proof. by rewrite exprS; simpc; rewrite -real_complexE rmorphN. Qed. + +Lemma complexI : injective (real_complex R). Proof. by move=> x y []. Qed. + +Lemma ler0c (x : R) : (0 <= x%:C) = (0 <= x). Proof. by simpc. Qed. + +Lemma lecE : forall x y : R[i], (x <= y) = (Im y == Im x) && (Re x <= Re y). +Proof. by move=> [a b] [c d]. Qed. + +Lemma ltcE : forall x y : R[i], (x < y) = (Im y == Im x) && (Re x < Re y). +Proof. by move=> [a b] [c d]. Qed. + +Lemma lecR : forall x y : R, (x%:C <= y%:C) = (x <= y). +Proof. by move=> x y; simpc. Qed. + +Lemma ltcR : forall x y : R, (x%:C < y%:C) = (x < y). +Proof. by move=> x y; simpc. Qed. + +Lemma conjc_is_rmorphism : rmorphism (@conjc R). +Proof. +split=> [[a b] [c d]|] /=; first by simpc; rewrite [d - _]addrC. +by split=> [[a b] [c d]|] /=; simpc. +Qed. + +Canonical conjc_rmorphism := RMorphism conjc_is_rmorphism. +Canonical conjc_additive := Additive conjc_is_rmorphism. + +Lemma conjcK : involutive (@conjc R). +Proof. by move=> [a b] /=; rewrite opprK. Qed. + +Lemma mulcJ_ge0 (x : R[i]) : 0 <= x * x ^*. +Proof. +by move: x=> [a b]; simpc; rewrite mulrC addNr eqxx addr_ge0 ?sqr_ge0. +Qed. + +Lemma conjc_real (x : R) : x%:C^* = x%:C. +Proof. by rewrite /= oppr0. Qed. + +Lemma ReJ_add (x : R[i]) : (Re x)%:C = (x + x^*) / 2%:R. +Proof. +case: x => a b; simpc; rewrite [0 ^+ 2]mul0r addr0 /=. +rewrite -!mulr2n -mulr_natr -mulrA [_ * (_ / _)]mulrA. +by rewrite divff ?mulr1 // -natrM pnatr_eq0. +Qed. + +Lemma ImJ_sub (x : R[i]) : (Im x)%:C = (x^* - x) / 2%:R * 'i. +Proof. +case: x => a b; simpc; rewrite [0 ^+ 2]mul0r addr0 /=. +rewrite -!mulr2n -mulr_natr -mulrA [_ * (_ / _)]mulrA. +by rewrite divff ?mulr1 ?opprK // -natrM pnatr_eq0. +Qed. + +Lemma ger0_Im (x : R[i]) : 0 <= x -> Im x = 0. +Proof. by move: x=> [a b] /=; simpc => /andP [/eqP]. Qed. + +(* Todo : extend theory of : *) +(* - signed exponents *) + +Lemma conj_ge0 : forall x : R[i], (0 <= x ^*) = (0 <= x). +Proof. by move=> [a b] /=; simpc; rewrite oppr_eq0. Qed. + +Lemma conjc_nat : forall n, (n%:R : R[i])^* = n%:R. +Proof. exact: rmorph_nat. Qed. + +Lemma conjc0 : (0 : R[i]) ^* = 0. +Proof. exact: (conjc_nat 0). Qed. + +Lemma conjc1 : (1 : R[i]) ^* = 1. +Proof. exact: (conjc_nat 1). Qed. + +Lemma conjc_eq0 : forall x : R[i], (x ^* == 0) = (x == 0). +Proof. by move=> [a b]; rewrite !eq_complex /= eqr_oppLR oppr0. Qed. + +Lemma conjc_inv: forall x : R[i], (x^-1)^* = (x^* )^-1. +Proof. exact: fmorphV. Qed. + +Lemma complex_root_conj (p : {poly R[i]}) (x : R[i]) : + root (map_poly conjc p) x = root p x^*. +Proof. by rewrite /root -{1}[x]conjcK horner_map /= conjc_eq0. Qed. + +Lemma complex_algebraic_trans (T : comRingType) (toR : {rmorphism T -> R}) : + integralRange toR -> integralRange (real_complex R \o toR). +Proof. +set f := _ \o _ => R_integral [a b]. +have integral_real x : integralOver f (x%:C) by apply: integral_rmorph. +rewrite [_ +i* _]complexE. +apply: integral_add => //; apply: integral_mul => //=. +exists ('X^2 + 1). + by rewrite monicE lead_coefDl ?size_polyXn ?size_poly1 ?lead_coefXn. +by rewrite rmorphD rmorph1 /= ?map_polyXn rootE !hornerE -expr2 sqr_i addNr. +Qed. + +Lemma normc_def (z : R[i]) : `|z| = (sqrtr ((Re z)^+2 + (Im z)^+2))%:C. +Proof. by case: z. Qed. + +Lemma add_Re2_Im2 (z : R[i]) : ((Re z)^+2 + (Im z)^+2)%:C = `|z|^+2. +Proof. by rewrite normc_def -rmorphX sqr_sqrtr ?addr_ge0 ?sqr_ge0. Qed. + +Lemma addcJ (z : R[i]) : z + z^* = 2%:R * (Re z)%:C. +Proof. by rewrite ReJ_add mulrC mulfVK ?pnatr_eq0. Qed. + +Lemma subcJ (z : R[i]) : z - z^* = 2%:R * (Im z)%:C * 'i. +Proof. +rewrite ImJ_sub mulrCA mulrA mulfVK ?pnatr_eq0 //. +by rewrite -mulrA ['i * _]sqr_i mulrN1 opprB. +Qed. + +End ComplexTheory. + +(* Section RcfDef. *) + +(* Variable R : realFieldType. *) +(* Notation C := (complex R). *) + +(* Definition rcf_odd := forall (p : {poly R}), *) +(* ~~odd (size p) -> {x | p.[x] = 0}. *) +(* Definition rcf_square := forall x : R, *) +(* {y | (0 <= y) && if 0 <= x then (y ^ 2 == x) else y == 0}. *) + +(* Lemma rcf_odd_sqr_from_ivt : rcf_axiom R -> rcf_odd * rcf_square. *) +(* Proof. *) +(* move=> ivt. *) +(* split. *) +(* move=> p sp. *) +(* move: (ivt p). *) +(* admit. *) +(* move=> x. *) +(* case: (boolP (0 <= x)) (@ivt ('X^2 - x%:P) 0 (1 + x))=> px; last first. *) +(* by move=> _; exists 0; rewrite lerr eqxx. *) +(* case. *) +(* * by rewrite ler_paddr ?ler01. *) +(* * rewrite !horner_lin oppr_le0 px /=. *) +(* rewrite subr_ge0 (@ler_trans _ (1 + x)) //. *) +(* by rewrite ler_paddl ?ler01 ?lerr. *) +(* by rewrite ler_pemulr // addrC -subr_ge0 ?addrK // subr0 ler_paddl ?ler01. *) +(* * move=> y hy; rewrite /root !horner_lin; move/eqP. *) +(* move/(canRL (@addrNK _ _)); rewrite add0r=> <-. *) +(* by exists y; case/andP: hy=> -> _; rewrite eqxx. *) +(* Qed. *) + +(* Lemma ivt_from_closed : GRing.ClosedField.axiom [ringType of C] -> rcf_axiom R. *) +(* Proof. *) +(* rewrite /GRing.ClosedField.axiom /= => hclosed. *) +(* move=> p a b hab. *) +(* Admitted. *) + +(* Lemma closed_form_rcf_odd_sqr : rcf_odd -> rcf_square *) +(* -> GRing.ClosedField.axiom [ringType of C]. *) +(* Proof. *) +(* Admitted. *) + +(* Lemma closed_form_ivt : rcf_axiom R -> GRing.ClosedField.axiom [ringType of C]. *) +(* Proof. *) +(* move/rcf_odd_sqr_from_ivt; case. *) +(* exact: closed_form_rcf_odd_sqr. *) +(* Qed. *) + +(* End RcfDef. *) + +Section ComplexClosed. + +Variable R : rcfType. + +Definition sqrtc (x : R[i]) : R[i] := + let: a +i* b := x in + let sgr1 b := if b == 0 then 1 else sgr b in + let r := sqrtr (a^+2 + b^+2) in + (sqrtr ((r + a)/2%:R)) +i* (sgr1 b * sqrtr ((r - a)/2%:R)). + +Lemma sqr_sqrtc : forall x, (sqrtc x) ^+ 2 = x. +Proof. +have sqr: forall x : R, x ^+ 2 = x * x. + by move=> x; rewrite exprS expr1. +case=> a b; rewrite exprS expr1; simpc. +have F0: 2%:R != 0 :> R by rewrite pnatr_eq0. +have F1: 0 <= 2%:R^-1 :> R by rewrite invr_ge0 ler0n. +have F2: `|a| <= sqrtr (a^+2 + b^+2). + rewrite -sqrtr_sqr ler_wsqrtr //. + by rewrite addrC -subr_ge0 addrK exprn_even_ge0. +have F3: 0 <= (sqrtr (a ^+ 2 + b ^+ 2) - a) / 2%:R. + rewrite mulr_ge0 // subr_ge0 (ler_trans _ F2) //. + by rewrite -(maxrN a) ler_maxr lerr. +have F4: 0 <= (sqrtr (a ^+ 2 + b ^+ 2) + a) / 2%:R. + rewrite mulr_ge0 // -{2}[a]opprK subr_ge0 (ler_trans _ F2) //. + by rewrite -(maxrN a) ler_maxr lerr orbT. +congr (_ +i* _); set u := if _ then _ else _. + rewrite mulrCA !mulrA. + have->: (u * u) = 1. + rewrite /u; case: (altP (_ =P _)); rewrite ?mul1r //. + by rewrite -expr2 sqr_sg => ->. + rewrite mul1r -!sqr !sqr_sqrtr //. + rewrite [_+a]addrC -mulrBl opprD addrA addrK. + by rewrite opprK -mulr2n -mulr_natl [_*a]mulrC mulfK. +rewrite mulrCA -mulrA -mulrDr [sqrtr _ * _]mulrC. +rewrite -mulr2n -sqrtrM // mulrAC !mulrA ?[_ * (_ - _)]mulrC -subr_sqr. +rewrite sqr_sqrtr; last first. + by rewrite ler_paddr // exprn_even_ge0. +rewrite [_^+2 + _]addrC addrK -mulrA -expr2 sqrtrM ?exprn_even_ge0 //. +rewrite !sqrtr_sqr -mulr_natr. +rewrite [`|_^-1|]ger0_norm // -mulrA [_ * _%:R]mulrC divff //. +rewrite mulr1 /u; case: (_ =P _)=>[->|]. + by rewrite normr0 mulr0. +by rewrite mulr_sg_norm. +Qed. + +Lemma sqrtc_sqrtr : + forall (x : R[i]), 0 <= x -> sqrtc x = (sqrtr (Re x))%:C. +Proof. +move=> [a b] /andP [/eqP->] /= a_ge0. +rewrite eqxx mul1r [0 ^+ _]exprS mul0r addr0 sqrtr_sqr. +rewrite ger0_norm // subrr mul0r sqrtr0 -mulr2n. +by rewrite -[_*+2]mulr_natr mulfK // pnatr_eq0. +Qed. + +Lemma sqrtc0 : sqrtc 0 = 0. +Proof. by rewrite sqrtc_sqrtr ?lerr // sqrtr0. Qed. + +Lemma sqrtc1 : sqrtc 1 = 1. +Proof. by rewrite sqrtc_sqrtr ?ler01 // sqrtr1. Qed. + +Lemma sqrtN1 : sqrtc (-1) = 'i. +Proof. +rewrite /sqrtc /= oppr0 eqxx [0^+_]exprS mulr0 addr0. +rewrite exprS expr1 mulN1r opprK sqrtr1 subrr mul0r sqrtr0. +by rewrite mul1r -mulr2n divff ?sqrtr1 // pnatr_eq0. +Qed. + +Lemma sqrtc_ge0 (x : R[i]) : (0 <= sqrtc x) = (0 <= x). +Proof. +apply/idP/idP=> [psx|px]; last first. + by rewrite sqrtc_sqrtr // lecR sqrtr_ge0. +by rewrite -[x]sqr_sqrtc exprS expr1 mulr_ge0. +Qed. + +Lemma sqrtc_eq0 (x : R[i]) : (sqrtc x == 0) = (x == 0). +Proof. +apply/eqP/eqP=> [eqs|->]; last by rewrite sqrtc0. +by rewrite -[x]sqr_sqrtc eqs exprS mul0r. +Qed. + +Lemma normcE x : `|x| = sqrtc (x * x^*). +Proof. +case: x=> a b; simpc; rewrite [b * a]mulrC addNr sqrtc_sqrtr //. +by simpc; rewrite /= addr_ge0 ?sqr_ge0. +Qed. + +Lemma sqr_normc (x : R[i]) : (`|x| ^+ 2) = x * x^*. +Proof. by rewrite normcE sqr_sqrtc. Qed. + +Lemma normc_ge_Re (x : R[i]) : `|Re x|%:C <= `|x|. +Proof. +by case: x => a b; simpc; rewrite -sqrtr_sqr ler_wsqrtr // ler_addl sqr_ge0. +Qed. + +Lemma normcJ (x : R[i]) : `|x^*| = `|x|. +Proof. by case: x => a b; simpc; rewrite /= sqrrN. Qed. + +Lemma invc_norm (x : R[i]) : x^-1 = `|x|^-2 * x^*. +Proof. +case: (altP (x =P 0)) => [->|dx]; first by rewrite rmorph0 mulr0 invr0. +apply: (mulIf dx); rewrite mulrC divff // -mulrA [_^* * _]mulrC -(sqr_normc x). +by rewrite mulVf // expf_neq0 ?normr_eq0. +Qed. + +Lemma canonical_form (a b c : R[i]) : + a != 0 -> + let d := b ^+ 2 - 4%:R * a * c in + let r1 := (- b - sqrtc d) / 2%:R / a in + let r2 := (- b + sqrtc d) / 2%:R / a in + a *: 'X^2 + b *: 'X + c%:P = a *: (('X - r1%:P) * ('X - r2%:P)). +Proof. +move=> a_neq0 d r1 r2. +rewrite !(mulrDr, mulrDl, mulNr, mulrN, opprK, scalerDr). +rewrite [_ * _%:P]mulrC !mul_polyC !scalerN !scalerA -!addrA; congr (_ + _). +rewrite addrA; congr (_ + _). + rewrite -opprD -scalerDl -scaleNr; congr(_ *: _). + rewrite ![a * _]mulrC !divfK // !mulrDl addrACA !mulNr addNr addr0. + by rewrite -opprD opprK -mulrDr -mulr2n -mulr_natl divff ?mulr1 ?pnatr_eq0. +symmetry; rewrite -!alg_polyC scalerA; congr (_%:A). +rewrite [a * _]mulrC divfK // /r2 mulrA mulrACA -invfM -natrM -subr_sqr. +rewrite sqr_sqrtc sqrrN /d opprB addrC addrNK -2!mulrA. +by rewrite mulrACA -natf_div // mul1r mulrAC divff ?mul1r. +Qed. + +Lemma monic_canonical_form (b c : R[i]) : + let d := b ^+ 2 - 4%:R * c in + let r1 := (- b - sqrtc d) / 2%:R in + let r2 := (- b + sqrtc d) / 2%:R in + 'X^2 + b *: 'X + c%:P = (('X - r1%:P) * ('X - r2%:P)). +Proof. +by rewrite /= -['X^2]scale1r canonical_form ?oner_eq0 // scale1r mulr1 !divr1. +Qed. + +Section extramx. +(* missing lemmas from matrix.v or mxalgebra.v *) + +Lemma mul_mx_rowfree_eq0 (K : fieldType) (m n p: nat) + (W : 'M[K]_(m,n)) (V : 'M[K]_(n,p)) : + row_free V -> (W *m V == 0) = (W == 0). +Proof. by move=> free; rewrite -!mxrank_eq0 mxrankMfree ?mxrank_eq0. Qed. + +Lemma sub_sums_genmxP (F : fieldType) (I : finType) (P : pred I) (m n : nat) + (A : 'M[F]_(m, n)) (B_ : I -> 'M_(m, n)) : +reflect (exists u_ : I -> 'M_m, A = \sum_(i | P i) u_ i *m B_ i) + (A <= \sum_(i | P i) <<B_ i>>)%MS. +Proof. +apply: (iffP idP); last first. + by move=> [u_ ->]; rewrite summx_sub_sums // => i _; rewrite genmxE submxMl. +move=> /sub_sumsmxP [u_ hA]. +have Hu i : exists v, u_ i *m <<B_ i>>%MS = v *m B_ i. + by apply/submxP; rewrite (submx_trans (submxMl _ _)) ?genmxE. +exists (fun i => projT1 (sig_eqW (Hu i))); rewrite hA. +by apply: eq_bigr => i /= P_i; case: sig_eqW. +Qed. + +Lemma mulmxP (K : fieldType) (m n : nat) (A B : 'M[K]_(m, n)) : + reflect (forall u : 'rV__, u *m A = u *m B) (A == B). +Proof. +apply: (iffP eqP) => [-> //|eqAB]. +apply: (@row_full_inj _ _ _ _ 1%:M); first by rewrite row_full_unit unitmx1. +by apply/row_matrixP => i; rewrite !row_mul eqAB. +Qed. + +Section Skew. + +Variable (K : numFieldType). + +Implicit Types (phK : phant K) (n : nat). + +Definition skew_vec n i j : 'rV[K]_(n * n) := + (mxvec ((delta_mx i j)) - (mxvec (delta_mx j i))). + +Definition skew_def phK n : 'M[K]_(n * n) := + (\sum_(i | ((i.2 : 'I__) < (i.1 : 'I__))%N) <<skew_vec i.1 i.2>>)%MS. + +Variable (n : nat). +Local Notation skew := (@skew_def (Phant K) n). + + +Lemma skew_direct_sum : mxdirect skew. +Proof. +apply/mxdirect_sumsE => /=; split => [i _|]; first exact: mxdirect_trivial. +apply/mxdirect_sumsP => [] [i j] /= lt_ij; apply/eqP; rewrite -submx0. +apply/rV_subP => v; rewrite sub_capmx => /andP []; rewrite !genmxE. +move=> /submxP [w ->] /sub_sums_genmxP [/= u_]. +move/matrixP => /(_ 0 (mxvec_index i j)); rewrite !mxE /= big_ord1. +rewrite /skew_vec /= !mxvec_delta !mxE !eqxx /=. +have /(_ _ _ (_, _) (_, _)) /= eq_mviE := + inj_eq (bij_inj (onT_bij (curry_mxvec_bij _ _))). +rewrite eq_mviE xpair_eqE -!val_eqE /= eq_sym andbb. +rewrite ltn_eqF // subr0 mulr1 summxE big1. + rewrite [w as X in X *m _]mx11_scalar => ->. + by rewrite mul_scalar_mx scale0r submx0. +move=> [i' j'] /= /andP[lt_j'i']. +rewrite xpair_eqE /= => neq'_ij. +rewrite /= !mxvec_delta !mxE big_ord1 !mxE !eqxx !eq_mviE. +rewrite !xpair_eqE /= [_ == i']eq_sym [_ == j']eq_sym (negPf neq'_ij) /=. +set z := (_ && _); suff /negPf -> : ~~ z by rewrite subrr mulr0. +by apply: contraL lt_j'i' => /andP [/eqP <- /eqP <-]; rewrite ltnNge ltnW. +Qed. +Hint Resolve skew_direct_sum. + +Lemma rank_skew : \rank skew = (n * n.-1)./2. +Proof. +rewrite /skew (mxdirectP _) //= -bin2 -triangular_sum big_mkord. +rewrite (eq_bigr (fun _ => 1%N)); last first. + move=> [i j] /= lt_ij; rewrite genmxE. + apply/eqP; rewrite eqn_leq rank_leq_row /= lt0n mxrank_eq0. + rewrite /skew_vec /= !mxvec_delta /= subr_eq0. + set j1 := mxvec_index _ _. + apply/negP => /eqP /matrixP /(_ 0 j1) /=; rewrite !mxE eqxx /=. + have /(_ _ _ (_, _) (_, _)) -> := + inj_eq (bij_inj (onT_bij (curry_mxvec_bij _ _))). + rewrite xpair_eqE -!val_eqE /= eq_sym andbb ltn_eqF //. + by move/eqP; rewrite oner_eq0. +transitivity (\sum_(i < n) (\sum_(j < n | j < i) 1))%N. + by rewrite pair_big_dep. +apply: eq_bigr => [] [[|i] Hi] _ /=; first by rewrite big1. +rewrite (eq_bigl _ _ (fun _ => ltnS _ _)). +have [n_eq0|n_gt0] := posnP n; first by move: Hi (Hi); rewrite {1}n_eq0. +rewrite -[n]prednK // big_ord_narrow_leq /=. + by rewrite -ltnS prednK // (leq_trans _ Hi). +by rewrite sum_nat_const card_ord muln1. +Qed. + +Lemma skewP (M : 'rV_(n * n)) : + reflect ((vec_mx M)^T = - vec_mx M) (M <= skew)%MS. +Proof. +apply: (iffP idP). + move/sub_sumsmxP => [v ->]; rewrite !linear_sum /=. + apply: eq_bigr => [] [i j] /= lt_ij; rewrite !mulmx_sum_row !linear_sum /=. + apply: eq_bigr => k _; rewrite !linearZ /=; congr (_ *: _) => {v}. + set r := << _ >>%MS; move: (row _ _) (row_sub k r) => v. + move: @r; rewrite /= genmxE => /sub_rVP [a ->]; rewrite !linearZ /=. + by rewrite /skew_vec !linearB /= !mxvecK !scalerN opprK addrC !trmx_delta. +move=> skewM; pose M' := vec_mx M. +pose xM i j := (M' i j - M' j i) *: skew_vec i j. +suff -> : M = 2%:R^-1 *: + (\sum_(i | true && ((i.2 : 'I__) < (i.1 : 'I__))%N) xM i.1 i.2). + rewrite scalemx_sub // summx_sub_sums // => [] [i j] /= lt_ij. + by rewrite scalemx_sub // genmxE. +rewrite /xM /= /skew_vec (eq_bigr _ (fun _ _ => scalerBr _ _ _)). +rewrite big_split /= sumrN !(eq_bigr _ (fun _ _ => scalerBl _ _ _)). +rewrite !big_split /= !sumrN opprD ?opprK addrACA [- _ + _]addrC. +rewrite -!sumrN -2!big_split /=. +rewrite /xM /= /skew_vec -!(eq_bigr _ (fun _ _ => scalerBr _ _ _)). +apply: (can_inj vec_mxK); rewrite !(linearZ, linearB, linearD, linear_sum) /=. +have -> /= : vec_mx M = 2%:R^-1 *: (M' - M'^T). + by rewrite skewM opprK -mulr2n -scaler_nat scalerA mulVf ?pnatr_eq0 ?scale1r. +rewrite {1 2}[M']matrix_sum_delta; congr (_ *: _). +rewrite pair_big /= !linear_sum /= -big_split /=. +rewrite (bigID (fun ij => (ij.2 : 'I__) < (ij.1 : 'I__))%N) /=; congr (_ + _). + apply: eq_bigr => [] [i j] /= lt_ij. + by rewrite !linearZ linearB /= ?mxvecK trmx_delta scalerN scalerBr. +rewrite (bigID (fun ij => (ij.1 : 'I__) == (ij.2 : 'I__))%N) /=. +rewrite big1 ?add0r; last first. + by move=> [i j] /= /andP[_ /eqP ->]; rewrite linearZ /= trmx_delta subrr. +rewrite (@reindex_inj _ _ _ _ (fun ij => (ij.2, ij.1))) /=; last first. + by move=> [? ?] [? ?] [] -> ->. +apply: eq_big => [] [i j] /=; first by rewrite -leqNgt ltn_neqAle andbC. +by rewrite !linearZ linearB /= ?mxvecK trmx_delta scalerN scalerBr. +Qed. + +End Skew. + +Notation skew K n := (@skew_def _ (Phant K) n). + +Section Companion. + +Variable (K : fieldType). + +Lemma companion_subproof (p : {poly K}) : + {M : 'M[K]_((size p).-1)| p \is monic -> char_poly M = p}. +Proof. +have simp := (castmxE, mxE, castmx_id, cast_ord_id). +case Hsp: (size p) => [|sp] /=. + move/eqP: Hsp; rewrite size_poly_eq0 => /eqP ->. + by exists 0; rewrite qualifE lead_coef0 eq_sym oner_eq0. +case: sp => [|sp] in Hsp *. + move: Hsp => /eqP/size_poly1P/sig2_eqW [c c_neq0 ->]. + by exists ((-c)%:M); rewrite monicE lead_coefC => /eqP ->; apply: det_mx00. +have addn1n n : (n + 1 = 1 + n)%N by rewrite addn1. +exists (castmx (erefl _, addn1n _) + (block_mx (\row_(i < sp) - p`_(sp - i)) (-p`_0)%:M + 1%:M 0)). +elim/poly_ind: p sp Hsp (addn1n _) => [|p c IHp] sp; first by rewrite size_poly0. +rewrite size_MXaddC. +have [->|p_neq0] //= := altP eqP; first by rewrite size_poly0; case: ifP. +move=> [Hsp] eq_cast. +rewrite monicE lead_coefDl ?size_polyC ?size_mul ?polyX_eq0 //; last first. + by rewrite size_polyX addn2 Hsp ltnS (leq_trans (leq_b1 _)). +rewrite lead_coefMX -monicE => p_monic. +rewrite -/_`_0 coefD coefMX coefC eqxx add0r. +case: sp => [|sp] in Hsp p_neq0 p_monic eq_cast *. + move: Hsp p_monic => /eqP/size_poly1P [l l_neq0 ->]. + rewrite monicE lead_coefC => /eqP ->; rewrite mul1r. + rewrite /char_poly /char_poly_mx thinmx0 flatmx0 castmx_id. + set b := (block_mx _ _ _ _); rewrite [map_mx _ b]map_block_mx => {b}. + rewrite !map_mx0 map_scalar_mx (@opp_block_mx _ 1 0 0 1) !oppr0. + set b := block_mx _ _ _ _; rewrite (_ : b = c%:P%:M); last first. + apply/matrixP => i j; rewrite !mxE; case: splitP => k /= Hk; last first. + by move: (ltn_ord i); rewrite Hk. + rewrite !ord1 !mxE; case: splitP => {k Hk} k /= Hk; first by move: (ltn_ord k). + by rewrite ord1 !mxE mulr1n rmorphN opprK. + by rewrite -rmorphD det_scalar. +rewrite /char_poly /char_poly_mx (expand_det_col _ ord_max). +rewrite big_ord_recr /= big_ord_recl //= big1 ?simp; last first. + move=> i _; rewrite !simp. + case: splitP => k /=; first by rewrite /bump leq0n ord1. + rewrite /bump leq0n => [] [Hik]; rewrite !simp. + case: splitP => l /=; first by move/eqP; rewrite gtn_eqF. + rewrite !ord1 addn0 => _ {l}; rewrite !simp -!val_eqE /=. + by rewrite /bump leq0n ltn_eqF ?ltnS ?add1n // mulr0n subrr mul0r. +case: splitP => i //=; rewrite !ord1 !simp => _ {i}. +case: splitP => i //=; first by move/eqP; rewrite gtn_eqF. +rewrite ord1 !simp => {i}. +case: splitP => i //=; rewrite ?ord1 ?simp // => /esym [eq_i_sp] _. +case: splitP => j //=; first by move/eqP; rewrite gtn_eqF. +rewrite ord1 !simp => {j} _. +rewrite eqxx mulr0n ?mulr1n rmorphN ?opprK !add0r !addr0 subr0 /=. +rewrite -[c%:P in X in _ = X]mulr1 addrC mulrC. +rewrite /cofactor -signr_odd addnn odd_double expr0 mul1r /=. +rewrite !linearB /= -!map_col' -!map_row'. +congr (_ * 'X + c%:P * _). + have coefE := (coefD, coefMX, coefC, eqxx, add0r, addr0). + rewrite -[X in _ = X](IHp sp Hsp _ p_monic) /char_poly /char_poly_mx. + congr (\det (_ - _)). + apply/matrixP => k l; rewrite !simp -val_eqE /=; + by rewrite /bump ![(sp < _)%N]ltnNge ?leq_ord. + apply/matrixP => k l; rewrite !simp. + case: splitP => k' /=; rewrite ?ord1 /bump ltnNge leq_ord add0n. + case: splitP => [k'' /= |k'' -> //]; rewrite ord1 !simp => k_eq0 _. + case: splitP => l' /=; rewrite ?ord1 /bump ltnNge leq_ord add0n !simp; + last by move/eqP; rewrite ?addn0 ltn_eqF. + move<-; case: splitP => l'' /=; rewrite ?ord1 ?addn0 !simp. + by move<-; rewrite subSn ?leq_ord ?coefE. + move->; rewrite eqxx mulr1n ?coefE subSn ?subrr //=. + by rewrite !rmorphN ?subnn addr0. + case: splitP => k'' /=; rewrite ?ord1 => -> // []; rewrite !simp. + case: splitP => l' /=; rewrite /bump ltnNge leq_ord add0n !simp -?val_eqE /=; + last by rewrite ord1 addn0 => /eqP; rewrite ltn_eqF. + by case: splitP => l'' /= -> <- <-; rewrite !simp // ?ord1 ?addn0 ?ltn_eqF. +move=> {IHp Hsp p_neq0 p_monic}; rewrite add0n; set s := _ ^+ _; +apply: (@mulfI _ s); first by rewrite signr_eq0. +rewrite mulrA -expr2 sqrr_sign mulr1 mul1r /s. +pose fix D n : 'M[{poly K}]_n.+1 := + if n is n'.+1 then block_mx (-1 :'M_1) ('X *: pid_mx 1) + 0 (D n') else -1. +pose D' n : 'M[{poly K}]_n.+1 := \matrix_(i, j) ('X *+ (i.+1 == j) - (i == j)%:R). +set M := (_ - _); have -> : M = D' sp. + apply/matrixP => k l; rewrite !simp. + case: splitP => k' /=; rewrite ?ord1 !simp // /bump leq0n add1n; case. + case: splitP => l' /=; rewrite /bump ltnNge leq_ord add0n; last first. + by move/eqP; rewrite ord1 addn0 ltn_eqF. + rewrite !simp -!val_eqE /= /bump leq0n ltnNge leq_ord [(true + _)%N]add1n ?add0n. + by move=> -> ->; rewrite polyC_muln. +have -> n : D' n = D n. + clear -simp; elim: n => [|n IHn] //=; apply/matrixP => i j; rewrite !simp. + by rewrite !ord1 /= ?mulr0n sub0r. + case: splitP => i' /=; rewrite -!val_eqE /= ?ord1 !simp => -> /=. + case: splitP => j' /=; rewrite ?ord1 !simp => -> /=; first by rewrite sub0r. + by rewrite eqSS andbT subr0 mulr_natr. + by case: splitP => j' /=; rewrite ?ord1 -?IHn ?simp => -> //=; rewrite subr0. +elim: sp {eq_cast i M eq_i_sp s} => [|n IHn]. + by rewrite /= (_ : -1 = (-1)%:M) ?det_scalar // rmorphN. +rewrite /= (@det_ublock _ 1 n.+1) IHn. +by rewrite (_ : -1 = (-1)%:M) ?det_scalar // rmorphN. +Qed. + +Definition companion (p : {poly K}) : 'M[K]_((size p).-1) := + projT1 (companion_subproof p). + +Lemma companionK (p : {poly K}) : p \is monic -> char_poly (companion p) = p. +Proof. exact: projT2 (companion_subproof _). Qed. + +End Companion. + +Section Restriction. + +Variable K : fieldType. +Variable m : nat. +Variables (V : 'M[K]_m). + +Implicit Types f : 'M[K]_m. + +Definition restrict f : 'M_(\rank V) := row_base V *m f *m (pinvmx (row_base V)). + +Lemma stable_row_base f : + (row_base V *m f <= row_base V)%MS = (V *m f <= V)%MS. +Proof. +rewrite eq_row_base. +by apply/idP/idP=> /(submx_trans _) ->; rewrite ?submxMr ?eq_row_base. +Qed. + +Lemma eigenspace_restrict f : (V *m f <= V)%MS -> + forall n a (W : 'M_(n, \rank V)), + (W <= eigenspace (restrict f) a)%MS = + (W *m row_base V <= eigenspace f a)%MS. +Proof. +move=> f_stabV n a W; apply/eigenspaceP/eigenspaceP; rewrite scalemxAl. + by move<-; rewrite -mulmxA -[X in _ = X]mulmxA mulmxKpV ?stable_row_base. +move/(congr1 (mulmx^~ (pinvmx (row_base V)))). +rewrite -2!mulmxA [_ *m (f *m _)]mulmxA => ->. +by apply: (row_free_inj (row_base_free V)); rewrite mulmxKpV ?submxMl. +Qed. + +Lemma eigenvalue_restrict f : (V *m f <= V)%MS -> + {subset eigenvalue (restrict f) <= eigenvalue f}. +Proof. +move=> f_stabV a /eigenvalueP [x /eigenspaceP]; rewrite eigenspace_restrict //. +move=> /eigenspaceP Hf x_neq0; apply/eigenvalueP. +by exists (x *m row_base V); rewrite ?mul_mx_rowfree_eq0 ?row_base_free. +Qed. + +Lemma restrictM : {in [pred f | (V *m f <= V)%MS] &, + {morph restrict : f g / f *m g}}. +Proof. +move=> f g; rewrite !inE => Vf Vg /=. +by rewrite /restrict 2!mulmxA mulmxA mulmxKpV ?stable_row_base. +Qed. + +End Restriction. + +End extramx. +Notation skew K n := (@skew_def _ (Phant K) n). + +Section Paper_HarmDerksen. + +(* Following http://www.math.lsa.umich.edu/~hderksen/preprints/linalg.pdf *) +(* quite literally except for Lemma5 where we don't use hermitian matrices. *) +(* Instead we encode the morphism by hand in 'M[R]_(n * n), which turns out *) +(* to be very clumsy for formalizing commutation and the end of Lemma 4. *) +(* Moreover, the Qed takes time, so it would be far much better to formalize *) +(* Herm C n and use it instead ! *) + +Implicit Types (K : fieldType). + +Definition CommonEigenVec_def K (phK : phant K) (d r : nat) := + forall (m : nat) (V : 'M[K]_m), ~~ (d %| \rank V) -> + forall (sf : seq 'M_m), size sf = r -> + {in sf, forall f, (V *m f <= V)%MS} -> + {in sf &, forall f g, f *m g = g *m f} -> + exists2 v : 'rV_m, (v != 0) & forall f, f \in sf -> + exists a, (v <= eigenspace f a)%MS. +Notation CommonEigenVec K d r := (@CommonEigenVec_def _ (Phant K) d r). + +Definition Eigen1Vec_def K (phK : phant K) (d : nat) := + forall (m : nat) (V : 'M[K]_m), ~~ (d %| \rank V) -> + forall (f : 'M_m), (V *m f <= V)%MS -> exists a, eigenvalue f a. +Notation Eigen1Vec K d := (@Eigen1Vec_def _ (Phant K) d). + +Lemma Eigen1VecP (K : fieldType) (d : nat) : + CommonEigenVec K d 1%N <-> Eigen1Vec K d. +Proof. +split=> [Hd m V HV f|Hd m V HV [] // f [] // _ /(_ _ (mem_head _ _))] f_stabV. + have [] := Hd _ _ HV [::f] (erefl _). + + by move=> ?; rewrite in_cons orbF => /eqP ->. + + by move=> ? ?; rewrite /= !in_cons !orbF => /eqP -> /eqP ->. + move=> v v_neq0 /(_ f (mem_head _ _)) [a /eigenspaceP]. + by exists a; apply/eigenvalueP; exists v. +have [a /eigenvalueP [v /eigenspaceP v_eigen v_neq0]] := Hd _ _ HV _ f_stabV. +by exists v => // ?; rewrite in_cons orbF => /eqP ->; exists a. +Qed. + +Lemma Lemma3 K d : Eigen1Vec K d -> forall r, CommonEigenVec K d r.+1. +Proof. +move=> E1V_K_d; elim => [|r IHr m V]; first exact/Eigen1VecP. +move: (\rank V) {-2}V (leqnn (\rank V)) => n {V}. +elim: n m => [|n IHn] m V. + by rewrite leqn0 => /eqP ->; rewrite dvdn0. +move=> le_rV_Sn HrV [] // f sf /= [] ssf f_sf_stabV f_sf_comm. +have [->|f_neq0] := altP (f =P 0). + have [||v v_neq0 Hsf] := (IHr _ _ HrV _ ssf). + + by move=> g f_sf /=; rewrite f_sf_stabV // in_cons f_sf orbT. + + move=> g h g_sf h_sf /=. + by apply: f_sf_comm; rewrite !in_cons ?g_sf ?h_sf ?orbT. + exists v => // g; rewrite in_cons => /orP [/eqP->|]; last exact: Hsf. + by exists 0; apply/eigenspaceP; rewrite mulmx0 scale0r. +have f_stabV : (V *m f <= V)%MS by rewrite f_sf_stabV ?mem_head. +have sf_stabV : {in sf, forall f, (V *m f <= V)%MS}. + by move=> g g_sf /=; rewrite f_sf_stabV // in_cons g_sf orbT. +pose f' := restrict V f; pose sf' := map (restrict V) sf. +have [||a a_eigen_f'] := E1V_K_d _ 1%:M _ f'; do ?by rewrite ?mxrank1 ?submx1. +pose W := (eigenspace f' a)%MS; pose Z := (f' - a%:M). +have rWZ : (\rank W + \rank Z)%N = \rank V. + by rewrite (mxrank_ker (f' - a%:M)) subnK // rank_leq_row. +have f'_stabW : (W *m f' <= W)%MS. + by rewrite (eigenspaceP (submx_refl _)) scalemx_sub. +have f'_stabZ : (Z *m f' <= Z)%MS. + rewrite (submx_trans _ (submxMl f' _)) //. + by rewrite mulmxDl mulmxDr mulmxN mulNmx scalar_mxC. +have sf'_comm : {in [::f' & sf'] &, forall f g, f *m g = g *m f}. + move=> g' h' /=; rewrite -!map_cons. + move=> /mapP [g g_s_sf -> {g'}] /mapP [h h_s_sf -> {h'}]. + by rewrite -!restrictM ?inE /= ?f_sf_stabV // f_sf_comm. +have sf'_stabW : {in sf', forall f, (W *m f <= W)%MS}. + move=> g g_sf /=; apply/eigenspaceP. + rewrite -mulmxA -[g *m _]sf'_comm ?(mem_head, in_cons, g_sf, orbT) //. + by rewrite mulmxA scalemxAl (eigenspaceP (submx_refl _)). +have sf'_stabZ : {in sf', forall f, (Z *m f <= Z)%MS}. + move=> g g_sf /=. + rewrite mulmxBl sf'_comm ?(mem_head, in_cons, g_sf, orbT) //. + by rewrite -scalar_mxC -mulmxBr submxMl. +have [eqWV|neqWV] := altP (@eqmxP _ _ _ _ W 1%:M). + have [] // := IHr _ W _ sf'; do ?by rewrite ?eqWV ?mxrank1 ?size_map. + move=> g h g_sf' h_sf'; apply: sf'_comm; + by rewrite in_cons (g_sf', h_sf') orbT. + move=> v v_neq0 Hv; exists (v *m row_base V). + by rewrite mul_mx_rowfree_eq0 ?row_base_free. + move=> g; rewrite in_cons => /orP [/eqP ->|g_sf]; last first. + have [|b] := Hv (restrict V g); first by rewrite map_f. + by rewrite eigenspace_restrict // ?sf_stabV //; exists b. + by exists a; rewrite -eigenspace_restrict // eqWV submx1. +have lt_WV : (\rank W < \rank V)%N. + rewrite -[X in (_ < X)%N](@mxrank1 K) rank_ltmx //. + by rewrite ltmxEneq neqWV // submx1. +have ltZV : (\rank Z < \rank V)%N. + rewrite -[X in (_ < X)%N]rWZ -subn_gt0 addnK lt0n mxrank_eq0 -lt0mx. + move: a_eigen_f' => /eigenvalueP [v /eigenspaceP] sub_vW v_neq0. + by rewrite (ltmx_sub_trans _ sub_vW) // lt0mx. +have [] // := IHn _ (if d %| \rank Z then W else Z) _ _ [:: f' & sf']. ++ by rewrite -ltnS (@leq_trans (\rank V)) //; case: ifP. ++ by apply: contra HrV; case: ifP => [*|-> //]; rewrite -rWZ dvdn_add. ++ by rewrite /= size_map ssf. ++ move=> g; rewrite in_cons => /= /orP [/eqP -> {g}|g_sf']; case: ifP => _ //; + by rewrite (sf'_stabW, sf'_stabZ). +move=> v v_neq0 Hv; exists (v *m row_base V). + by rewrite mul_mx_rowfree_eq0 ?row_base_free. +move=> g Hg; have [|b] := Hv (restrict V g); first by rewrite -map_cons map_f. +rewrite eigenspace_restrict //; first by exists b. +by move: Hg; rewrite in_cons => /orP [/eqP -> //|/sf_stabV]. +Qed. + +Lemma Lemma4 r : CommonEigenVec R 2 r.+1. +Proof. +apply: Lemma3=> m V hV f f_stabV. +have [|a] := @odd_poly_root _ (char_poly (restrict V f)). + by rewrite size_char_poly /= -dvdn2. +rewrite -eigenvalue_root_char => /eigenvalueP [v] /eigenspaceP v_eigen v_neq0. +exists a; apply/eigenvalueP; exists (v *m row_base V). + by apply/eigenspaceP; rewrite -eigenspace_restrict. +by rewrite mul_mx_rowfree_eq0 ?row_base_free. +Qed. + +Notation toC := (real_complex R). +Notation MtoC := (map_mx toC). + +Lemma Lemma5 : Eigen1Vec R[i] 2. +Proof. +move=> m V HrV f f_stabV. +suff: exists a, eigenvalue (restrict V f) a. + by move=> [a /eigenvalue_restrict Hf]; exists a; apply: Hf. +move: (\rank V) (restrict V f) => {f f_stabV V m} n f in HrV *. +pose u := map_mx (@Re R) f; pose v := map_mx (@Im R) f. +have fE : f = MtoC u + 'i *: MtoC v. + rewrite /u /v [f]lock; apply/matrixP => i j; rewrite !mxE /=. + by case: (locked f i j) => a b; simpc. +move: u v => u v in fE *. +pose L1fun : 'M[R]_n -> _ := + 2%:R^-1 \*: (mulmxr u \+ (mulmxr v \o trmx) + \+ ((mulmx (u^T)) \- (mulmx (v^T) \o trmx))). +pose L1 := lin_mx [linear of L1fun]. +pose L2fun : 'M[R]_n -> _ := + 2%:R^-1 \*: (((@GRing.opp _) \o (mulmxr u \o trmx) \+ mulmxr v) + \+ ((mulmx (u^T) \o trmx) \+ (mulmx (v^T)))). +pose L2 := lin_mx [linear of L2fun]. +have [] := @Lemma4 _ _ 1%:M _ [::L1; L2] (erefl _). ++ by move: HrV; rewrite mxrank1 !dvdn2 ?negbK odd_mul andbb. ++ by move=> ? _ /=; rewrite submx1. ++ suff {f fE}: L1 *m L2 = L2 *m L1. + move: L1 L2 => L1 L2 commL1L2 La Lb. + rewrite !{1}in_cons !{1}in_nil !{1}orbF. + by move=> /orP [] /eqP -> /orP [] /eqP -> //; symmetry. + apply/eqP/mulmxP => x; rewrite [X in X = _]mulmxA [X in _ = X]mulmxA. + rewrite 4!mul_rV_lin !mxvecK /= /L1fun /L2fun /=; congr (mxvec (_ *: _)). + move=> {L1 L2 L1fun L2fun}. + case: n {x} (vec_mx x) => [//|n] x in HrV u v *. + do ?[rewrite -(scalemxAl, scalemxAr, scalerN, scalerDr) + |rewrite (mulmxN, mulNmx, trmxK, trmx_mul) + |rewrite ?[(_ *: _)^T]linearZ ?[(_ + _)^T]linearD ?[(- _)^T]linearN /=]. + congr (_ *: _). + rewrite !(mulmxDr, mulmxDl, mulNmx, mulmxN, mulmxA, opprD, opprK). + do ![move: (_ *m _ *m _)] => t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12. + rewrite [X in X + _ + _]addrC [X in X + _ = _]addrACA. + rewrite [X in _ = (_ + _ + X) + _]addrC [X in _ = X + _]addrACA. + rewrite [X in _ + (_ + _ + X)]addrC [X in _ + X = _]addrACA. + rewrite [X in _ = _ + (X + _)]addrC [X in _ = _ + X]addrACA. + rewrite [X in X = _]addrACA [X in _ = X]addrACA; congr (_ + _). + by rewrite addrC [X in X + _ = _]addrACA [X in _ + X = _]addrACA. +move=> g g_neq0 Hg; have [] := (Hg L1, Hg L2). +rewrite !(mem_head, in_cons, orbT) => []. +move=> [//|a /eigenspaceP g_eigenL1] [//|b /eigenspaceP g_eigenL2]. +rewrite !mul_rV_lin /= /L1fun /L2fun /= in g_eigenL1 g_eigenL2. +do [move=> /(congr1 vec_mx); rewrite mxvecK linearZ /=] in g_eigenL1. +do [move=> /(congr1 vec_mx); rewrite mxvecK linearZ /=] in g_eigenL2. +move=> {L1 L2 L1fun L2fun Hg HrV}. +set vg := vec_mx g in g_eigenL1 g_eigenL2. +exists (a +i* b); apply/eigenvalueP. +pose w := (MtoC vg - 'i *: MtoC vg^T). +exists (nz_row w); last first. + rewrite nz_row_eq0 subr_eq0; apply: contraNneq g_neq0 => Hvg. + rewrite -vec_mx_eq0; apply/eqP/matrixP => i j; rewrite !mxE /=. + move: Hvg => /matrixP /(_ i j); rewrite !mxE /=; case. + by rewrite !(mul0r, mulr0, add0r, mul1r, oppr0) => ->. +apply/eigenspaceP. +case: n f => [|n] f in u v g g_neq0 vg w fE g_eigenL1 g_eigenL2 *. + by rewrite thinmx0 eqxx in g_neq0. +rewrite (submx_trans (nz_row_sub _)) //; apply/eigenspaceP. +rewrite fE [a +i* b]complexE /=. +rewrite !(mulmxDr, mulmxBl, =^~scalemxAr, =^~scalemxAl) -!map_mxM. +rewrite !(scalerDl, scalerDr, scalerN, =^~scalemxAr, =^~scalemxAl). +rewrite !scalerA /= mulrAC ['i * _]sqr_i ?mulN1r scaleN1r scaleNr !opprK. +rewrite [_ * 'i]mulrC -!scalerA -!map_mxZ /=. +do 2!rewrite [X in (_ - _) + X]addrC [_ - 'i *: _ + _]addrACA. +rewrite ![- _ + _]addrC -!scalerBr -!(rmorphB, rmorphD) /=. +congr (_ + 'i *: _); congr map_mx; rewrite -[_ *: _^T]linearZ /=; +rewrite -g_eigenL1 -g_eigenL2 linearZ -(scalerDr, scalerBr); +do ?rewrite ?trmxK ?trmx_mul ?[(_ + _)^T]linearD ?[(- _)^T]linearN /=; +rewrite -[in X in _ *: (_ + X)]addrC 1?opprD 1?opprB ?mulmxN ?mulNmx; +rewrite [X in _ *: X]addrACA. + rewrite -mulr2n [X in _ *: (_ + X)]addrACA subrr addNr !addr0. + by rewrite -scaler_nat scalerA mulVf ?pnatr_eq0 // scale1r. +rewrite subrr addr0 addrA addrAC -addrA -mulr2n addrC. +by rewrite -scaler_nat scalerA mulVf ?pnatr_eq0 // scale1r. +Qed. + +Lemma Lemma6 k r : CommonEigenVec R[i] (2^k.+1) r.+1. +Proof. +elim: k {-2}k (leqnn k) r => [|k IHk] l. + by rewrite leqn0 => /eqP ->; apply: Lemma3; apply: Lemma5. +rewrite leq_eqVlt ltnS => /orP [/eqP ->|/IHk //] r {l}. +apply: Lemma3 => m V Hn f f_stabV {r}. +have [dvd2n|Ndvd2n] := boolP (2 %| \rank V); last first. + exact: @Lemma5 _ _ Ndvd2n _ f_stabV. +suff: exists a, eigenvalue (restrict V f) a. + by move=> [a /eigenvalue_restrict Hf]; exists a; apply: Hf. +case: (\rank V) (restrict V f) => {f f_stabV V m} [|n] f in Hn dvd2n *. + by rewrite dvdn0 in Hn. +pose L1 := lin_mx [linear of mulmxr f \+ (mulmx f^T)]. +pose L2 := lin_mx [linear of mulmxr f \o mulmx f^T]. +have [] /= := IHk _ (leqnn _) _ _ (skew R[i] n.+1) _ [::L1; L2] (erefl _). ++ rewrite rank_skew; apply: contra Hn. + rewrite -(@dvdn_pmul2r 2) //= -expnSr muln2 -[_.*2]add0n. + have n_odd : odd n by rewrite dvdn2 /= ?negbK in dvd2n *. + have {2}<- : odd (n.+1 * n) = 0%N :> nat by rewrite odd_mul /= andNb. + by rewrite odd_double_half Gauss_dvdl // coprime_pexpl // coprime2n. ++ move=> L; rewrite 2!in_cons in_nil orbF => /orP [] /eqP ->; + apply/rV_subP => v /submxP [s -> {v}]; rewrite mulmxA; apply/skewP; + set u := _ *m skew _ _; + do [have /skewP : (u <= skew R[i] n.+1)%MS by rewrite submxMl]; + rewrite mul_rV_lin /= !mxvecK => skew_u. + by rewrite opprD linearD /= !trmx_mul skew_u mulmxN mulNmx addrC trmxK. + by rewrite !trmx_mul trmxK skew_u mulNmx mulmxN mulmxA. ++ suff commL1L2: L1 *m L2 = L2 *m L1. + move=> La Lb; rewrite !in_cons !in_nil !orbF. + by move=> /orP [] /eqP -> /orP [] /eqP -> //; symmetry. + apply/eqP/mulmxP => u; rewrite !mulmxA !mul_rV_lin ?mxvecK /=. + by rewrite !(mulmxDr, mulmxDl, mulmxA). +move=> v v_neq0 HL1L2; have [] := (HL1L2 L1, HL1L2 L2). +rewrite !(mem_head, in_cons) orbT => [] [] // a vL1 [] // b vL2 {HL1L2}. +move/eigenspaceP in vL1; move/eigenspaceP in vL2. +move: vL2 => /(congr1 vec_mx); rewrite linearZ mul_rV_lin /= mxvecK. +move: vL1 => /(congr1 vec_mx); rewrite linearZ mul_rV_lin /= mxvecK. +move=> /(canRL (addKr _)) ->; rewrite mulmxDl mulNmx => Hv. +pose p := 'X^2 + (- a) *: 'X + b%:P. +have : vec_mx v *m (horner_mx f p) = 0. + rewrite !(rmorphN, rmorphB, rmorphD, rmorphM) /= linearZ /=. + rewrite horner_mx_X horner_mx_C !mulmxDr mul_mx_scalar -Hv. + rewrite addrAC addrA mulmxA addrN add0r. + by rewrite -scalemxAl -scalemxAr scaleNr addrN. +rewrite [p]monic_canonical_form; move: (_ / 2%:R) (_ / 2%:R). +move=> r2 r1 {Hv p a b L1 L2 Hn}. +rewrite rmorphM !rmorphB /= horner_mx_X !horner_mx_C mulmxA => Hv. +have: exists2 w : 'M_n.+1, w != 0 & exists a, (w <= eigenspace f a)%MS. + move: Hv; set w := vec_mx _ *m _. + have [w_eq0 _|w_neq0 r2_eigen] := altP (w =P 0). + exists (vec_mx v); rewrite ?vec_mx_eq0 //; exists r1. + apply/eigenspaceP/eqP. + by rewrite -mul_mx_scalar -subr_eq0 -mulmxBr -/w w_eq0. + exists w => //; exists r2; apply/eigenspaceP/eqP. + by rewrite -mul_mx_scalar -subr_eq0 -mulmxBr r2_eigen. +move=> [w w_neq0 [a /(submx_trans (nz_row_sub _)) /eigenspaceP Hw]]. +by exists a; apply/eigenvalueP; exists (nz_row w); rewrite ?nz_row_eq0. +Qed. + +(* We enunciate a corollary of Theorem 7 *) +Corollary Theorem7' (m : nat) (f : 'M[R[i]]_m) : (0 < m)%N -> exists a, eigenvalue f a. +Proof. +case: m f => // m f _; have /Eigen1VecP := @Lemma6 m 0. +move=> /(_ m.+1 1 _ f) []; last by move=> a; exists a. ++ by rewrite mxrank1 (contra (dvdn_leq _)) // -ltnNge ltn_expl. ++ by rewrite submx1. +Qed. + +Lemma C_acf_axiom : GRing.ClosedField.axiom [ringType of R[i]]. +Proof. +move=> n c n_gt0; pose p := 'X^n - \poly_(i < n) c i. +suff [x rpx] : exists x, root p x. + exists x; move: rpx; rewrite /root /p hornerD hornerN hornerXn subr_eq0. + by move=> /eqP ->; rewrite horner_poly. +have p_monic : p \is monic. + rewrite qualifE lead_coefDl ?lead_coefXn //. + by rewrite size_opp size_polyXn ltnS size_poly. +have sp_gt1 : (size p > 1)%N. + by rewrite size_addl size_polyXn // size_opp ltnS size_poly. +case: n n_gt0 p => //= n _ p in p_monic sp_gt1 *. +have [] := Theorem7' (companion p); first by rewrite -(subnK sp_gt1) addn2. +by move=> x; rewrite eigenvalue_root_char companionK //; exists x. +Qed. + +Definition C_decFieldMixin := closed_fields_QEMixin C_acf_axiom. +Canonical C_decField := DecFieldType R[i] C_decFieldMixin. +Canonical C_closedField := ClosedFieldType R[i] C_acf_axiom. + +End Paper_HarmDerksen. + +End ComplexClosed. + +Definition complexalg := realalg[i]. + +Canonical complexalg_eqType := [eqType of complexalg]. +Canonical complexalg_choiceType := [choiceType of complexalg]. +Canonical complexalg_countype := [choiceType of complexalg]. +Canonical complexalg_zmodType := [zmodType of complexalg]. +Canonical complexalg_ringType := [ringType of complexalg]. +Canonical complexalg_comRingType := [comRingType of complexalg]. +Canonical complexalg_unitRingType := [unitRingType of complexalg]. +Canonical complexalg_comUnitRingType := [comUnitRingType of complexalg]. +Canonical complexalg_idomainType := [idomainType of complexalg]. +Canonical complexalg_fieldType := [fieldType of complexalg]. +Canonical complexalg_decDieldType := [decFieldType of complexalg]. +Canonical complexalg_closedFieldType := [closedFieldType of complexalg]. +Canonical complexalg_numDomainType := [numDomainType of complexalg]. +Canonical complexalg_numFieldType := [numFieldType of complexalg]. +Canonical complexalg_numClosedFieldType := [numClosedFieldType of complexalg]. + +Lemma complexalg_algebraic : integralRange (@ratr [unitRingType of complexalg]). +Proof. +move=> x; suff [p p_monic] : integralOver (real_complex _ \o realalg_of _) x. + by rewrite (eq_map_poly (fmorph_eq_rat _)); exists p. +by apply: complex_algebraic_trans; apply: realalg_algebraic. +Qed. |
