diff options
| author | Cyril Cohen | 2017-11-23 16:33:36 +0100 |
|---|---|---|
| committer | Cyril Cohen | 2018-02-06 13:54:37 +0100 |
| commit | fafd4dac5315e1d4e071b0044a50a16360b31964 (patch) | |
| tree | 5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/odd_order/PFsection4.v | |
| parent | 835467324db450c8fb8971e477cc4d82fa3e861b (diff) | |
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/odd_order/PFsection4.v')
| -rw-r--r-- | mathcomp/odd_order/PFsection4.v | 12 |
1 files changed, 6 insertions, 6 deletions
diff --git a/mathcomp/odd_order/PFsection4.v b/mathcomp/odd_order/PFsection4.v index c897e84..b5f9344 100644 --- a/mathcomp/odd_order/PFsection4.v +++ b/mathcomp/odd_order/PFsection4.v @@ -482,7 +482,7 @@ Lemma prTIred_inj : injective mu_. Proof. move=> j1 j2 /(congr1 (cfdot (mu_ j1)))/esym/eqP; rewrite !cfdot_prTIred. by rewrite eqC_nat eqn_pmul2r ?cardG_gt0 // eqxx; case: (j1 =P j2). -Qed. +Qed. Lemma prTIred_not_real j : j != 0 -> ~~ cfReal (mu_ j). Proof. @@ -645,7 +645,7 @@ have [[_ nKL] [nKz _]] := (andP nsKL, setIdP Itheta_z). suffices{k theta Itheta_z} /eqP->: imIchi == 'Fix_Jirr[z]. by apply/afix1P/irr_inj; rewrite conjg_IirrE inertiaJ. rewrite eqEcard; apply/andP; split. - apply/subsetP=> _ /imsetP[j _ ->]; apply/afix1P/irr_inj. + apply/subsetP=> _ /imsetP[j _ ->]; apply/afix1P/irr_inj. by rewrite conjg_IirrE -(cfRes_prTIirr 0) (cfConjgRes _ _ nsKL) ?cfConjg_id. have ->: #|imIchi| = w2 by rewrite card_imset //; apply: prTIres_inj. have actsL_KK: [acts L, on classes K | 'Js \ subsetT L]. @@ -720,7 +720,7 @@ Record prime_Dade_hypothesis : Prop := PrimeDadeHypothesis { Hypothesis prDadeHyp : prime_Dade_hypothesis. Let ctiWG : cyclicTI_hypothesis G defW := prDadeHyp. -Let ptiWL : primeTI_hypothesis L K defW := prDadeHyp. +Let ptiWL : primeTI_hypothesis L K defW := prDadeHyp. Let ctiWL : cyclicTI_hypothesis L defW := prime_cycTIhyp ptiWL. Let ddA0 : Dade_hypothesis G L A0 := prDadeHyp. Local Notation ddA0def := (prDade_def prDadeHyp). @@ -838,7 +838,7 @@ Qed. (* First part of PeterFalvi (4.8). *) Lemma prDade_sub_TIirr_on i j k : j != 0 -> k != 0 -> mu2_ i j 1%g = mu2_ i k 1%g -> - mu2_ i j - mu2_ i k \in 'CF(L, A0). + mu2_ i j - mu2_ i k \in 'CF(L, A0). Proof. move=> nzj nzk eq_mu1. apply/cfun_onP=> g; rewrite defA0 !inE negb_or !cfunE => /andP[A'g V'g]. @@ -846,7 +846,7 @@ have [Lg | L'g] := boolP (g \in L); last by rewrite !cfun0 ?subrr. have{Lg} /bigcupP[_ /rcosetsP[x W1x ->] Kx_g]: g \in cover (rcosets K W1). by rewrite (cover_partition (rcosets_partition_mul W1 K)) (sdprodW defL). have [x1 | ntx] := eqVneq x 1%g. - have [-> | ntg] := eqVneq g 1%g; first by rewrite eq_mu1 subrr. + have [-> | ntg] := eqVneq g 1%g; first by rewrite eq_mu1 subrr. have{A'g} A1'g: g \notin 1%g |: A by rewrite !inE negb_or ntg. rewrite x1 mulg1 in Kx_g; rewrite -!(cfResE (mu2_ i _) sKL) ?cfRes_prTIirr //. by rewrite !(cfun_onP (prDade_TIres_on _)) ?subrr. @@ -924,7 +924,7 @@ have ccT: cfConjC_closed calT. by rewrite prTIred_aut cfunE conj_Cnat ?Cnat_char1 ?prTIred_char. have TonA: 'Z[calT, L^#] =i 'Z[calT, A]. have A'1: 1%g \notin A by apply: contra (subsetP sAA0 _) _; have [] := ddA0. - move => psi; rewrite zcharD1E -(setU1K A'1) zcharD1; congr (_ && _). + move=> psi; rewrite zcharD1E -(setU1K A'1) zcharD1; congr (_ && _). apply/idP/idP; [apply: zchar_trans_on psi => psi Tpsi | exact: zcharW]. have [j /andP[nz_j _] Dpsi] := imageP Tpsi. by rewrite zchar_split mem_zchar // Dpsi prDade_TIred_on. |
