aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/odd_order/PFsection4.v
diff options
context:
space:
mode:
authorCyril Cohen2017-11-23 16:33:36 +0100
committerCyril Cohen2018-02-06 13:54:37 +0100
commitfafd4dac5315e1d4e071b0044a50a16360b31964 (patch)
tree5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/odd_order/PFsection4.v
parent835467324db450c8fb8971e477cc4d82fa3e861b (diff)
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/odd_order/PFsection4.v')
-rw-r--r--mathcomp/odd_order/PFsection4.v12
1 files changed, 6 insertions, 6 deletions
diff --git a/mathcomp/odd_order/PFsection4.v b/mathcomp/odd_order/PFsection4.v
index c897e84..b5f9344 100644
--- a/mathcomp/odd_order/PFsection4.v
+++ b/mathcomp/odd_order/PFsection4.v
@@ -482,7 +482,7 @@ Lemma prTIred_inj : injective mu_.
Proof.
move=> j1 j2 /(congr1 (cfdot (mu_ j1)))/esym/eqP; rewrite !cfdot_prTIred.
by rewrite eqC_nat eqn_pmul2r ?cardG_gt0 // eqxx; case: (j1 =P j2).
-Qed.
+Qed.
Lemma prTIred_not_real j : j != 0 -> ~~ cfReal (mu_ j).
Proof.
@@ -645,7 +645,7 @@ have [[_ nKL] [nKz _]] := (andP nsKL, setIdP Itheta_z).
suffices{k theta Itheta_z} /eqP->: imIchi == 'Fix_Jirr[z].
by apply/afix1P/irr_inj; rewrite conjg_IirrE inertiaJ.
rewrite eqEcard; apply/andP; split.
- apply/subsetP=> _ /imsetP[j _ ->]; apply/afix1P/irr_inj.
+ apply/subsetP=> _ /imsetP[j _ ->]; apply/afix1P/irr_inj.
by rewrite conjg_IirrE -(cfRes_prTIirr 0) (cfConjgRes _ _ nsKL) ?cfConjg_id.
have ->: #|imIchi| = w2 by rewrite card_imset //; apply: prTIres_inj.
have actsL_KK: [acts L, on classes K | 'Js \ subsetT L].
@@ -720,7 +720,7 @@ Record prime_Dade_hypothesis : Prop := PrimeDadeHypothesis {
Hypothesis prDadeHyp : prime_Dade_hypothesis.
Let ctiWG : cyclicTI_hypothesis G defW := prDadeHyp.
-Let ptiWL : primeTI_hypothesis L K defW := prDadeHyp.
+Let ptiWL : primeTI_hypothesis L K defW := prDadeHyp.
Let ctiWL : cyclicTI_hypothesis L defW := prime_cycTIhyp ptiWL.
Let ddA0 : Dade_hypothesis G L A0 := prDadeHyp.
Local Notation ddA0def := (prDade_def prDadeHyp).
@@ -838,7 +838,7 @@ Qed.
(* First part of PeterFalvi (4.8). *)
Lemma prDade_sub_TIirr_on i j k :
j != 0 -> k != 0 -> mu2_ i j 1%g = mu2_ i k 1%g ->
- mu2_ i j - mu2_ i k \in 'CF(L, A0).
+ mu2_ i j - mu2_ i k \in 'CF(L, A0).
Proof.
move=> nzj nzk eq_mu1.
apply/cfun_onP=> g; rewrite defA0 !inE negb_or !cfunE => /andP[A'g V'g].
@@ -846,7 +846,7 @@ have [Lg | L'g] := boolP (g \in L); last by rewrite !cfun0 ?subrr.
have{Lg} /bigcupP[_ /rcosetsP[x W1x ->] Kx_g]: g \in cover (rcosets K W1).
by rewrite (cover_partition (rcosets_partition_mul W1 K)) (sdprodW defL).
have [x1 | ntx] := eqVneq x 1%g.
- have [-> | ntg] := eqVneq g 1%g; first by rewrite eq_mu1 subrr.
+ have [-> | ntg] := eqVneq g 1%g; first by rewrite eq_mu1 subrr.
have{A'g} A1'g: g \notin 1%g |: A by rewrite !inE negb_or ntg.
rewrite x1 mulg1 in Kx_g; rewrite -!(cfResE (mu2_ i _) sKL) ?cfRes_prTIirr //.
by rewrite !(cfun_onP (prDade_TIres_on _)) ?subrr.
@@ -924,7 +924,7 @@ have ccT: cfConjC_closed calT.
by rewrite prTIred_aut cfunE conj_Cnat ?Cnat_char1 ?prTIred_char.
have TonA: 'Z[calT, L^#] =i 'Z[calT, A].
have A'1: 1%g \notin A by apply: contra (subsetP sAA0 _) _; have [] := ddA0.
- move => psi; rewrite zcharD1E -(setU1K A'1) zcharD1; congr (_ && _).
+ move=> psi; rewrite zcharD1E -(setU1K A'1) zcharD1; congr (_ && _).
apply/idP/idP; [apply: zchar_trans_on psi => psi Tpsi | exact: zcharW].
have [j /andP[nz_j _] Dpsi] := imageP Tpsi.
by rewrite zchar_split mem_zchar // Dpsi prDade_TIred_on.