diff options
| author | Cyril Cohen | 2017-11-23 16:33:36 +0100 |
|---|---|---|
| committer | Cyril Cohen | 2018-02-06 13:54:37 +0100 |
| commit | fafd4dac5315e1d4e071b0044a50a16360b31964 (patch) | |
| tree | 5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/odd_order/PFsection13.v | |
| parent | 835467324db450c8fb8971e477cc4d82fa3e861b (diff) | |
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/odd_order/PFsection13.v')
| -rw-r--r-- | mathcomp/odd_order/PFsection13.v | 26 |
1 files changed, 13 insertions, 13 deletions
diff --git a/mathcomp/odd_order/PFsection13.v b/mathcomp/odd_order/PFsection13.v index 18e8606..339df0f 100644 --- a/mathcomp/odd_order/PFsection13.v +++ b/mathcomp/odd_order/PFsection13.v @@ -532,7 +532,7 @@ have Zalpha: alpha \in 'Z[irr H]. rewrite cfResInd_sum_cfclass ?reindex_cfclass -?cfnorm_Ind_irr //=. rewrite scalerK ?cfnorm_eq0 ?cfInd_eq0 ?irr_neq0 ?irr_char ?gFsub //. by apply: rpred_sum => i _; apply: irr_vchar. -have{Da_ Za_} Za: a \in Cint by rewrite -[a]Da_ ?Za_ ?sS1H. +have{Da_ Za_} Za: a \in Cint by rewrite -[a]Da_ ?Za_ ?sS1H. exists alpha => //; split=> //. set a1 := a / _ in Dchi; pose phi := a1 *: 'Res zeta1 + alpha. transitivity (#|H|%:R * '[phi] - `|phi 1%g| ^+ 2). @@ -738,7 +738,7 @@ have [tau1 cohS [b _ Dtau1]] := FTtypeP_coherence. have Zeta01: eta01 \in 'Z[irr G] by rewrite cycTIiso_vchar. pose j1 := signW2 b #1; pose d : algC := (-1) ^+ b; pose mu1 := mu_ j1. have nzj1: j1 != 0 by [rewrite signW2_eq0 ?Iirr1_neq0]; have S1mu1 := S1mu nzj1. -have o_mu_eta01 j: j != 0 -> '[tau1 (mu_ j), eta01] = d *+ (j == j1). +have o_mu_eta01 j: j != 0 -> '[tau1 (mu_ j), eta01] = d *+ (j == j1). move/Dtau1->; rewrite -/d cfdotZl cfdot_suml big_ord_recl /=. rewrite cfdot_cycTIiso andTb (inv_eq (signW2K b)). by rewrite big1 ?addr0 ?mulr_natr // => i _; rewrite cfdot_cycTIiso. @@ -783,7 +783,7 @@ have{tau1muj} ->: tau1 lambda x = sum_eta1 x. have Hmuj: mu_ j \in calH := Hmu nz_j. have dmu1: (lambda - mu_ j) 1%g == 0 by rewrite !cfunE !calHuq ?subrr. have H1dmu: lambda - mu_ j \in 'CF(S, H^#). - by rewrite cfun_onD1 rpredB ?((seqInd_on (gFnormal _ _)) setT). + by rewrite cfun_onD1 rpredB ?((seqInd_on (gFnormal _ _)) setT). have [_ ->] := cohS; last first. by rewrite zcharD1E ?rpredB ?mem_zchar ?FTseqInd_TIred /=. have A0dmu := cfun_onS (Fitting_sub_FTsupp0 maxS) H1dmu. @@ -968,8 +968,8 @@ Section Thirteen_10_to_13_15. Variable lambda : 'CF(S). Hypotheses (Slam : lambda \in calS) (irrHlam : irrIndH lambda). -Let Hlam : lambda \in calH. Proof. by have [] := andP irrHlam. Qed. -Let Ilam : lambda \in irr S. Proof. by have [] := andP irrHlam. Qed. +Let Hlam : lambda \in calH. Proof. by have [] := andP irrHlam. Qed. +Let Ilam : lambda \in irr S. Proof. by have [] := andP irrHlam. Qed. Let c := #|C|. Let u := #|U : C|. @@ -1045,7 +1045,7 @@ have Kdtheta xi: by rewrite cfInd_on ?subsetT. have oHK alpha beta: alpha \in 'CF(G, HG) -> beta \in 'CF(G, KG) -> '[alpha, beta] = 0. -- by move=> Halpha Kbeta; rewrite (cfdotElr Halpha Kbeta) tiHK big_set0 mulr0. +- by move=> Halpha Kbeta; rewrite (cfdotElr Halpha Kbeta) tiHK big_set0 mulr0. have o_lambda_theta: '[tau1S lambda, tau1T theta] = 0. pose S1 := lambda :: lambda^*%CF; pose T1 := theta :: theta^*%CF. have sS1S: {subset S1 <= calS} by apply/allP; rewrite /= Slam cfAut_seqInd. @@ -1118,7 +1118,7 @@ have{meanTI} meanG f : have{type24} tiK: normedTI K^# G T by have/type24[] := TtypeP. move=> fJ; rewrite -!meanTI // {1}/mean (big_setD1 1%g) // (big_setID H1G) /=. rewrite [in rhs in _ + (_ + rhs)](big_setID K1G) /= -/g -!mulrDl !addrA. - congr ((_ + _ + _ + _) / g); rewrite ?(setIidPr _) // /H1G /K1G. + congr ((_ + _ + _ + _) / g); rewrite ?(setIidPr _) // /H1G /K1G. + by rewrite class_supportEr -cover_imset -class_supportD1 setSD ?subsetT. + rewrite subsetD -setI_eq0 setIC tiHK eqxx andbT. by rewrite class_supportEr -cover_imset -class_supportD1 setSD ?subsetT. @@ -1126,7 +1126,7 @@ have{meanTI} meanG f : apply: eq_bigl => x; rewrite !inE andbT -!negb_or orbCA orbA orbC. by case: (x =P 1%g) => //= ->; rewrite mem_class_support ?group1. have lam1_ub: mean G0 G (nm2 lam1) <= lambda 1%g ^+ 2 / #|S|%:R - g^-1. - have [[Itau1 Ztau1] _] := cohS. + have [[Itau1 Ztau1] _] := cohS. have{Itau1} n1lam1: '[lam1] = 1 by rewrite Itau1 ?mem_zchar ?irrWnorm. have{Ztau1} Zlam1: lam1 \in 'Z[irr G] by rewrite Ztau1 ?mem_zchar. rewrite -ler_opp2 opprB -(ler_add2l '[lam1]) {1}n1lam1 addrCA. @@ -1452,7 +1452,7 @@ Lemma FTtypeP_primes_mod_cases : & p != 1 %[mod q] -> [/\ coprime ustar p.-1, ustar == 1 %[mod q] & forall b, b %| ustar -> b == 1 %[mod q]]]. -Proof. +Proof. have ustar_mod r: p = 1 %[mod r] -> ustar = q %[mod r]. move=> pr1; rewrite -[q]card_ord -sum1_card /ustar predn_exp //. rewrite -(subnKC pgt2) mulKn // subnKC //. @@ -1510,7 +1510,7 @@ have b_odd: odd b by rewrite Dbu odd_mul mFT_odd andbT in ustar_odd. case: ifPn => [/p1_q q_dv_ustar | /p'1_q[_ _ /(_ b)]]. have /dvdnP[c Db]: q %| b. rewrite Dbu Gauss_dvdl // coprime_sym in q_dv_ustar. - by apply: coprimeSg coPUq; have /mulG_sub[_ sUPU] := sdprodW defPU. + by apply: coprimeSg coPUq; have /mulG_sub[_ sUPU] := sdprodW defPU. have c_odd: odd c by rewrite Db odd_mul mFT_odd andbT in b_odd. suffices /eqP c1: c == 1%N by rewrite Dbu Db c1 mul1n mulKn ?prime_gt0. rewrite eqn_leq odd_gt0 // andbT -ltnS -(odd_ltn 3) // ltnS. @@ -1820,7 +1820,7 @@ have Dgamma: 'Ind[S, P <*> W1] 1 = (gamma %% P)%CF. by rewrite quotientYidl //; have [] := sdprodP defPW1. have gamma1: gamma 1%g = u%:R. rewrite -cfMod1 -Dgamma cfInd1 // cfun11 -divgS // -(sdprod_card defPW1). - by rewrite mulr1 -(sdprod_card defS) -(sdprod_card defPU) divnMr // mulKn. + by rewrite mulr1 -(sdprod_card defS) -(sdprod_card defPU) divnMr // mulKn. have frobUW1: [Frobenius U <*> W1 = U ><| W1] by have [[]] := Sfacts. have q_dv_u1: q %| u.-1 := Frobenius_dvd_ker1 frobUW1. have [nP_UW1 /isomP[/=]] := sdprod_isom defS_P; set h := restrm _ _ => injh hS. @@ -2041,7 +2041,7 @@ have ZsubL psi: psi \in calL -> psi - psi^*%CF \in 'Z[calL, L^#]. have mem_eta j: eta_ 0 j \in map sigma (irr W) by rewrite map_f ?mem_irr. have otau1eta: orthogonal (map tau1 calL) (map sigma (irr W)). apply/orthogonalP=> _ _ /mapP[psi Lpsi ->] /mapP[w irr_w ->]. - have{w irr_w} [i [j ->]] := cycTIirrP defW irr_w; rewrite -/(w_ i j). + have{w irr_w} [i [j ->]] := cycTIirrP defW irr_w; rewrite -/(w_ i j). pose Psi := tau1 (psi - psi^*%CF); pose NC := cyclicTI_NC ctiWG. have [[Itau1 Ztau1] Dtau1] := cohL. have Lpsis: psi^*%CF \in calL by rewrite cfAut_seqInd. @@ -2114,7 +2114,7 @@ have{Gamma_even} odd_bSphi_bLeta: (bSphi + bLeta == 1 %[mod 2])%C. rewrite 2!cfdotDl 2!['[_, eta01]]cfdotDl 2!['[_, Gamma]]cfdotDl !cfdotNl. rewrite cfnorm1 o_GaL_1 ['[1, Gamma]]cfdotC Ga1 conjC0 addr0 add0r. have ->: 1 = eta_ 0 0 by rewrite /w_ cycTIirr00 cycTIiso1. - rewrite cfdot_cycTIiso mulrb ifN_eqC ?Iirr1_neq0 // add0r. + rewrite cfdot_cycTIiso mulrb ifN_eqC ?Iirr1_neq0 // add0r. rewrite 2?(orthogonalP otau1eta _ _ (map_f _ _) (mem_eta _)) // oppr0 !add0r. by rewrite addr0 addrA addrC addr_eq0 !opprB addrA /eqCmod => /eqP <-. have abs_mod2 a: a \in Cint -> {b : bool | a == b%:R %[mod 2]}%C. |
