aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/odd_order/BGsection6.v
diff options
context:
space:
mode:
authorCyril Cohen2017-11-23 16:33:36 +0100
committerCyril Cohen2018-02-06 13:54:37 +0100
commitfafd4dac5315e1d4e071b0044a50a16360b31964 (patch)
tree5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/odd_order/BGsection6.v
parent835467324db450c8fb8971e477cc4d82fa3e861b (diff)
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/odd_order/BGsection6.v')
-rw-r--r--mathcomp/odd_order/BGsection6.v10
1 files changed, 5 insertions, 5 deletions
diff --git a/mathcomp/odd_order/BGsection6.v b/mathcomp/odd_order/BGsection6.v
index e344b98..9e06b1a 100644
--- a/mathcomp/odd_order/BGsection6.v
+++ b/mathcomp/odd_order/BGsection6.v
@@ -31,7 +31,7 @@ Implicit Type p : nat.
Section OneType.
-Variable gT : finGroupType.
+Variable gT : finGroupType.
Implicit Types G H K S U : {group gT}.
(* This is B & G, Theorem A.4(b) and 6.1, or Gorenstein 6.5.2, the main Hall- *)
@@ -77,7 +77,7 @@ case/sdprodP=> _ defG nKH tiKH coKH solK sKG'.
set K' := K^`(1); have [sK'K nK'K] := andP (der_normal 1 K : K' <| K).
have nK'H: H \subset 'N(K') := gFnorm_trans _ nKH.
set R := [~: K, H]; have sRK: R \subset K by rewrite commg_subl.
-have [nRK nRH] := joing_subP (commg_norm K H : K <*> H \subset 'N(R)).
+have [nRK nRH] := joing_subP (commg_norm K H : K <*> H \subset 'N(R)).
have sKbK'H': K / R \subset (K / R)^`(1) * (H / R)^`(1).
have defGb: (K / R) \* (H / R) = G / R.
by rewrite -defG quotientMl ?cprodE // centsC quotient_cents2r.
@@ -90,7 +90,7 @@ have{sKbK'H' tiKbHb'} derKb: (K / R)^`(1) = K / R.
have{derKb} Kb1: K / R = 1.
rewrite (contraNeq (sol_der1_proper _ (subxx (K / R)))) ?quotient_sol //.
by rewrite derKb properxx.
-have{Kb1 sRK} defKH: [~: K, H] = K.
+have{Kb1 sRK} defKH: [~: K, H] = K.
by apply/eqP; rewrite eqEsubset sRK -quotient_sub1 ?Kb1 //=.
split=> //; rewrite -quotient_sub1 ?subIset ?nK'K //= -/K'.
have cKaKa: abelian (K / K') := der_abelian 0 K.
@@ -255,7 +255,7 @@ Qed.
(* This is B & G, Lemma 6.6(d). *)
Lemma plength1_Sylow_Jsub (Q : {group gT}) :
Q \subset G -> p.-group Q ->
- exists2 x, x \in 'C_G(Q :&: S) & Q :^ x \subset S.
+ exists2 x, x \in 'C_G(Q :&: S) & Q :^ x \subset S.
Proof.
move=> sQG pQ; have sQ_Gp'p: Q \subset 'O_{p^',p}(G).
rewrite -sub_quotient_pre /= pcore_mod1 ?(subset_trans sQG) //.
@@ -278,7 +278,7 @@ End OneType.
Theorem plength1_norm_pmaxElem gT p (G E L : {group gT}) :
E \in 'E*_p(G) -> odd p -> solvable G -> p.-length_1 G ->
L \subset G -> E \subset 'N(L) -> p^'.-group L ->
- L \subset 'O_p^'(G).
+ L \subset 'O_p^'(G).
Proof.
move=> maxE p_odd solG pl1G sLG nEL p'L.
case p_pr: (prime p); last first.