diff options
| author | Cyril Cohen | 2017-11-23 16:33:36 +0100 |
|---|---|---|
| committer | Cyril Cohen | 2018-02-06 13:54:37 +0100 |
| commit | fafd4dac5315e1d4e071b0044a50a16360b31964 (patch) | |
| tree | 5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/odd_order/BGsection15.v | |
| parent | 835467324db450c8fb8971e477cc4d82fa3e861b (diff) | |
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/odd_order/BGsection15.v')
| -rw-r--r-- | mathcomp/odd_order/BGsection15.v | 20 |
1 files changed, 10 insertions, 10 deletions
diff --git a/mathcomp/odd_order/BGsection15.v b/mathcomp/odd_order/BGsection15.v index 06d7eb9..704e98d 100644 --- a/mathcomp/odd_order/BGsection15.v +++ b/mathcomp/odd_order/BGsection15.v @@ -242,7 +242,7 @@ set part_c := forall U, _; have c_holds: part_c. have piCx_hyp: {in X^#, forall x', x' \in ('C_M[x])^# /\ \sigma(M)^'.-elt x'}. move=> x' /setD1P[ntx' Xx']; have Ex' := subsetP sXE x' Xx'. rewrite 3!inE ntx' (subsetP sEM) ?(mem_p_elt s'M_E) //=. - by rewrite (subsetP _ _ Xx') ?sub_cent1. + by rewrite (subsetP _ _ Xx') ?sub_cent1. have piCx x' X1x' := (* GG -- ssreflect evar generalization fails in trunk *) let: conj c e := piCx_hyp x' X1x' in pi_of_cent_sigma maxM Ms1x c e. have t2X: \tau2(M).-group X. @@ -250,7 +250,7 @@ set part_c := forall U, _; have c_holds: part_c. have X1x': x' \in X^# by rewrite !inE Xx' -order_gt1 ox' prime_gt1. have [[]|[]] := piCx _ X1x'; last by rewrite /p_elt ox' pnatE. case/idPn; have:= mem_p_elt (pgroupS sXU sk'U) Xx'. - by rewrite /p_elt ox' !pnatE // => /norP[]. + by rewrite /p_elt ox' !pnatE // => /norP[]. suffices cycX: cyclic X. split=> //; have [x' defX] := cyclicP cycX. have X1x': x' \in X^# by rewrite !inE -cycle_eq1 -cycle_subG -defX ntX /=. @@ -292,7 +292,7 @@ have{cycZ cUU} [cycK cUU] := (cyclicS (joing_subl _ _) cycZ, cUU ntK). split=> // [_||/UtypeF[] //]; first split=> //. apply/eqP; rewrite eq_sym eqEcard -(leq_pmul2r (cardG_gt0 K)). have [nsMsU_M _ mulMsU _ _] := sdprod_context defM. - rewrite (sdprod_card defM) (sdprod_card defM') der1_min ?normal_norm //=. + rewrite (sdprod_card defM) (sdprod_card defM') der1_min ?normal_norm //=. by rewrite -(isog_abelian (sdprod_isog defM)) cyclic_abelian. by apply: abelianS cUU; rewrite gen_subG -big_distrr subsetIl. Qed. @@ -348,7 +348,7 @@ have ltM'M: M' \proper M by rewrite (sol_der1_proper solM) ?mmax_neq1. have sMsM': Ms \subset M' := Msigma_der1 maxM. have [-> | ltMF_Ms] := eqVproper sMF_Ms; first by rewrite eqxx Msigma_neq1. set KDpart := (X in _ /\ X); suffices KD_holds: KDpart. - do 2!split=> //; have [K hallK] := Hall_exists \kappa(M) solM. + do 2!split=> //; have [K hallK] := Hall_exists \kappa(M) solM. pose q := #|'C_(M`_\sigma)(K)|; have [D hallD] := Hall_exists q^' solMs. have [_ [_ _ piMFq _] _ _ _] := KD_holds K D hallK (proper_neq ltMF_Ms) hallD. by rewrite -rank_gt0 (leq_trans _ (p_rank_le_rank q _)) ?p_rank_gt0. @@ -467,7 +467,7 @@ have{K1 sK1M sK1K coMsK1 coQK1 prK1 defCMsK1 nQK1 solMs} Qi_rec Qi: rewrite -(setIidPr sLD_Ms) setIAC defCMsK1 quotientS1 //= -/Ks joingC. rewrite norm_joinEl // -(setIidPl sKsQ) -setIA -group_modr // tiQD mul1g. have [-> | ntLKs] := eqVneq (Ks :&: L) 1; first exact: sub1G. - by rewrite subIset ?(implyP regLK) // prime_meetG. + by rewrite subIset ?(implyP regLK) // prime_meetG. apply: (prime_Frobenius_sol_kernel_nil defLK1b). by apply: solvableS (quotient_sol _ solM); rewrite join_subG !quotientS. by rewrite -(card_isog (quotient_isog _ _)) ?coprime_TIg // (coprimeSg sQiQ). @@ -566,7 +566,7 @@ have{frobDKb regQbDb} [p_pr oQb cQbD']: transitivity ('C_Q[x] / Q0); last first. rewrite -(coprime_quotient_cent (subsetIl Q _) nQ0K coQK solQ) /= -/Q0. by rewrite -/Q -(setIidPl sQMs) -!setIA prMsK // !inE ntx. - rewrite -!cent_cycle -quotient_cycle //; rewrite -!cycle_subG in Kx nQ0x. + rewrite -!cent_cycle -quotient_cycle //; rewrite -!cycle_subG in Kx nQ0x. by rewrite coprime_quotient_cent ?(coprimegS Kx). have:= Frobenius_primact frobDKb _ _ _ ntQb _ prQbK regQbDb. have [nQDK solDK] := (subset_trans sDKM nQM, solvableS sDKM solM). @@ -577,7 +577,7 @@ have{cQbD'} sM''FM: M'' \subset 'F(M). have nQMs := subset_trans sMsM nQM. rewrite [M'']dergSn -/M' -defMs -(quotientSGK _ sQFM) ?comm_subG //. rewrite (quotient_der 1) //= -/Ms -mulQD quotientMidl -quotient_der //= -/Q. - by rewrite quotientS // -defFM subsetI sub_astabQ !comm_subG ?quotient_der. + by rewrite quotientS // -defFM subsetI sub_astabQ !comm_subG ?quotient_der. have sQ0Ms := subset_trans sQ0Q sQMs. have ->: 'C_Ms(Ks / Q0 | 'Q) = 'F(M). have sFMcKsb: 'F(M) \subset 'C_Ms(Ks / Q0 | 'Q). @@ -1048,7 +1048,7 @@ split=> // [E E1 E2 E3 complEi | {Y t2Y defF sM'F}]. have E3_1: E3 :=: 1. have [sEM s'E _] := and3P hallE; have sE'M' := dergS 1 sEM. have sE3F: E3 \subset 'F(M) := subset_trans sE3E' (subset_trans sE'M' sM'F). - rewrite -(setIidPr sE3F) coprime_TIg // -(dprod_card defF) coprime_mull. + rewrite -(setIidPr sE3F) coprime_TIg // -(dprod_card defF) coprime_mull. rewrite (pnat_coprime (pcore_pgroup _ _) (pgroupS sE3E s'E)). exact: p'nat_coprime (sub_pgroup (@tau3'2 _ M) t2Y) t3E3. have{defE} defE: E2 ><| E1 = E by rewrite -defE E3_1 sdprod1g. @@ -1106,7 +1106,7 @@ have max_rB A: p.-abelem A -> B \subset A -> 'r_p(A) <= 2. have [x1 defX1]: exists x1, X1 :=: <[x1]>. by apply/cyclicP; rewrite prime_cyclic ?oX1. have Px1: x1 \in P by rewrite -cycle_subG -defX1. - have Px1a: x1 ^ a \in P. + have Px1a: x1 ^ a \in P. by rewrite (subsetP sAaP) // memJ_conjg -cycle_subG -defX1. have [b nPb def_xb] := sigma_Hall_tame maxM sylP_Ms Px1 Px1a. exists (a * b^-1); rewrite !inE !actM !sub_conjgV defX1 /= -!cycleJ def_xb. @@ -1268,7 +1268,7 @@ Theorem tau2_P2type_signalizer M Mstar U K r R H (q := #|K|) : [/\ prime q, \tau2(H) =i (q : nat_pred) & \tau2(M)^'.-group M]. Proof. move: Mstar => L P2maxM complU maxCK_L sylR maxNR_H not_t2'H. -have [[PmaxM notP1maxM] [hallU hallK _]] := (setDP P2maxM, complU). +have [[PmaxM notP1maxM] [hallU hallK _]] := (setDP P2maxM, complU). have q_pr: prime q by have [_ _ _ _ []] := Ptype_structure PmaxM hallK. have [[maxH _] [maxM _]] := (setIdP maxNR_H, setDP PmaxM). have [maxL sCKL] := setIdP maxCK_L; have hallLs := Msigma_Hall maxL. |
