aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/odd_order/BGsection15.v
diff options
context:
space:
mode:
authorCyril Cohen2017-11-23 16:33:36 +0100
committerCyril Cohen2018-02-06 13:54:37 +0100
commitfafd4dac5315e1d4e071b0044a50a16360b31964 (patch)
tree5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/odd_order/BGsection15.v
parent835467324db450c8fb8971e477cc4d82fa3e861b (diff)
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/odd_order/BGsection15.v')
-rw-r--r--mathcomp/odd_order/BGsection15.v20
1 files changed, 10 insertions, 10 deletions
diff --git a/mathcomp/odd_order/BGsection15.v b/mathcomp/odd_order/BGsection15.v
index 06d7eb9..704e98d 100644
--- a/mathcomp/odd_order/BGsection15.v
+++ b/mathcomp/odd_order/BGsection15.v
@@ -242,7 +242,7 @@ set part_c := forall U, _; have c_holds: part_c.
have piCx_hyp: {in X^#, forall x', x' \in ('C_M[x])^# /\ \sigma(M)^'.-elt x'}.
move=> x' /setD1P[ntx' Xx']; have Ex' := subsetP sXE x' Xx'.
rewrite 3!inE ntx' (subsetP sEM) ?(mem_p_elt s'M_E) //=.
- by rewrite (subsetP _ _ Xx') ?sub_cent1.
+ by rewrite (subsetP _ _ Xx') ?sub_cent1.
have piCx x' X1x' := (* GG -- ssreflect evar generalization fails in trunk *)
let: conj c e := piCx_hyp x' X1x' in pi_of_cent_sigma maxM Ms1x c e.
have t2X: \tau2(M).-group X.
@@ -250,7 +250,7 @@ set part_c := forall U, _; have c_holds: part_c.
have X1x': x' \in X^# by rewrite !inE Xx' -order_gt1 ox' prime_gt1.
have [[]|[]] := piCx _ X1x'; last by rewrite /p_elt ox' pnatE.
case/idPn; have:= mem_p_elt (pgroupS sXU sk'U) Xx'.
- by rewrite /p_elt ox' !pnatE // => /norP[].
+ by rewrite /p_elt ox' !pnatE // => /norP[].
suffices cycX: cyclic X.
split=> //; have [x' defX] := cyclicP cycX.
have X1x': x' \in X^# by rewrite !inE -cycle_eq1 -cycle_subG -defX ntX /=.
@@ -292,7 +292,7 @@ have{cycZ cUU} [cycK cUU] := (cyclicS (joing_subl _ _) cycZ, cUU ntK).
split=> // [_||/UtypeF[] //]; first split=> //.
apply/eqP; rewrite eq_sym eqEcard -(leq_pmul2r (cardG_gt0 K)).
have [nsMsU_M _ mulMsU _ _] := sdprod_context defM.
- rewrite (sdprod_card defM) (sdprod_card defM') der1_min ?normal_norm //=.
+ rewrite (sdprod_card defM) (sdprod_card defM') der1_min ?normal_norm //=.
by rewrite -(isog_abelian (sdprod_isog defM)) cyclic_abelian.
by apply: abelianS cUU; rewrite gen_subG -big_distrr subsetIl.
Qed.
@@ -348,7 +348,7 @@ have ltM'M: M' \proper M by rewrite (sol_der1_proper solM) ?mmax_neq1.
have sMsM': Ms \subset M' := Msigma_der1 maxM.
have [-> | ltMF_Ms] := eqVproper sMF_Ms; first by rewrite eqxx Msigma_neq1.
set KDpart := (X in _ /\ X); suffices KD_holds: KDpart.
- do 2!split=> //; have [K hallK] := Hall_exists \kappa(M) solM.
+ do 2!split=> //; have [K hallK] := Hall_exists \kappa(M) solM.
pose q := #|'C_(M`_\sigma)(K)|; have [D hallD] := Hall_exists q^' solMs.
have [_ [_ _ piMFq _] _ _ _] := KD_holds K D hallK (proper_neq ltMF_Ms) hallD.
by rewrite -rank_gt0 (leq_trans _ (p_rank_le_rank q _)) ?p_rank_gt0.
@@ -467,7 +467,7 @@ have{K1 sK1M sK1K coMsK1 coQK1 prK1 defCMsK1 nQK1 solMs} Qi_rec Qi:
rewrite -(setIidPr sLD_Ms) setIAC defCMsK1 quotientS1 //= -/Ks joingC.
rewrite norm_joinEl // -(setIidPl sKsQ) -setIA -group_modr // tiQD mul1g.
have [-> | ntLKs] := eqVneq (Ks :&: L) 1; first exact: sub1G.
- by rewrite subIset ?(implyP regLK) // prime_meetG.
+ by rewrite subIset ?(implyP regLK) // prime_meetG.
apply: (prime_Frobenius_sol_kernel_nil defLK1b).
by apply: solvableS (quotient_sol _ solM); rewrite join_subG !quotientS.
by rewrite -(card_isog (quotient_isog _ _)) ?coprime_TIg // (coprimeSg sQiQ).
@@ -566,7 +566,7 @@ have{frobDKb regQbDb} [p_pr oQb cQbD']:
transitivity ('C_Q[x] / Q0); last first.
rewrite -(coprime_quotient_cent (subsetIl Q _) nQ0K coQK solQ) /= -/Q0.
by rewrite -/Q -(setIidPl sQMs) -!setIA prMsK // !inE ntx.
- rewrite -!cent_cycle -quotient_cycle //; rewrite -!cycle_subG in Kx nQ0x.
+ rewrite -!cent_cycle -quotient_cycle //; rewrite -!cycle_subG in Kx nQ0x.
by rewrite coprime_quotient_cent ?(coprimegS Kx).
have:= Frobenius_primact frobDKb _ _ _ ntQb _ prQbK regQbDb.
have [nQDK solDK] := (subset_trans sDKM nQM, solvableS sDKM solM).
@@ -577,7 +577,7 @@ have{cQbD'} sM''FM: M'' \subset 'F(M).
have nQMs := subset_trans sMsM nQM.
rewrite [M'']dergSn -/M' -defMs -(quotientSGK _ sQFM) ?comm_subG //.
rewrite (quotient_der 1) //= -/Ms -mulQD quotientMidl -quotient_der //= -/Q.
- by rewrite quotientS // -defFM subsetI sub_astabQ !comm_subG ?quotient_der.
+ by rewrite quotientS // -defFM subsetI sub_astabQ !comm_subG ?quotient_der.
have sQ0Ms := subset_trans sQ0Q sQMs.
have ->: 'C_Ms(Ks / Q0 | 'Q) = 'F(M).
have sFMcKsb: 'F(M) \subset 'C_Ms(Ks / Q0 | 'Q).
@@ -1048,7 +1048,7 @@ split=> // [E E1 E2 E3 complEi | {Y t2Y defF sM'F}].
have E3_1: E3 :=: 1.
have [sEM s'E _] := and3P hallE; have sE'M' := dergS 1 sEM.
have sE3F: E3 \subset 'F(M) := subset_trans sE3E' (subset_trans sE'M' sM'F).
- rewrite -(setIidPr sE3F) coprime_TIg // -(dprod_card defF) coprime_mull.
+ rewrite -(setIidPr sE3F) coprime_TIg // -(dprod_card defF) coprime_mull.
rewrite (pnat_coprime (pcore_pgroup _ _) (pgroupS sE3E s'E)).
exact: p'nat_coprime (sub_pgroup (@tau3'2 _ M) t2Y) t3E3.
have{defE} defE: E2 ><| E1 = E by rewrite -defE E3_1 sdprod1g.
@@ -1106,7 +1106,7 @@ have max_rB A: p.-abelem A -> B \subset A -> 'r_p(A) <= 2.
have [x1 defX1]: exists x1, X1 :=: <[x1]>.
by apply/cyclicP; rewrite prime_cyclic ?oX1.
have Px1: x1 \in P by rewrite -cycle_subG -defX1.
- have Px1a: x1 ^ a \in P.
+ have Px1a: x1 ^ a \in P.
by rewrite (subsetP sAaP) // memJ_conjg -cycle_subG -defX1.
have [b nPb def_xb] := sigma_Hall_tame maxM sylP_Ms Px1 Px1a.
exists (a * b^-1); rewrite !inE !actM !sub_conjgV defX1 /= -!cycleJ def_xb.
@@ -1268,7 +1268,7 @@ Theorem tau2_P2type_signalizer M Mstar U K r R H (q := #|K|) :
[/\ prime q, \tau2(H) =i (q : nat_pred) & \tau2(M)^'.-group M].
Proof.
move: Mstar => L P2maxM complU maxCK_L sylR maxNR_H not_t2'H.
-have [[PmaxM notP1maxM] [hallU hallK _]] := (setDP P2maxM, complU).
+have [[PmaxM notP1maxM] [hallU hallK _]] := (setDP P2maxM, complU).
have q_pr: prime q by have [_ _ _ _ []] := Ptype_structure PmaxM hallK.
have [[maxH _] [maxM _]] := (setIdP maxNR_H, setDP PmaxM).
have [maxL sCKL] := setIdP maxCK_L; have hallLs := Msigma_Hall maxL.