diff options
| author | Cyril Cohen | 2017-11-23 16:33:36 +0100 |
|---|---|---|
| committer | Cyril Cohen | 2018-02-06 13:54:37 +0100 |
| commit | fafd4dac5315e1d4e071b0044a50a16360b31964 (patch) | |
| tree | 5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/odd_order/BGsection13.v | |
| parent | 835467324db450c8fb8971e477cc4d82fa3e861b (diff) | |
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/odd_order/BGsection13.v')
| -rw-r--r-- | mathcomp/odd_order/BGsection13.v | 20 |
1 files changed, 10 insertions, 10 deletions
diff --git a/mathcomp/odd_order/BGsection13.v b/mathcomp/odd_order/BGsection13.v index e90be7f..de9ddaf 100644 --- a/mathcomp/odd_order/BGsection13.v +++ b/mathcomp/odd_order/BGsection13.v @@ -95,7 +95,7 @@ have sSH': S \subset H^`(1). have [[F1 hallF1] [F3 hallF3]] := ex_tau13_compl hallF. have [F2 _ complFi] := ex_tau2_compl hallF hallF1 hallF3. have [[sF3F' nsF3F] _ _ _ _] := sigma_compl_context maxH complFi. - apply: subset_trans (subset_trans sF3F' (dergS 1 (pHall_sub hallF))). + apply: subset_trans (subset_trans sF3F' (dergS 1 (pHall_sub hallF))). by rewrite (sub_normal_Hall hallF3) ?(pi_pgroup pS). have sylS_H' := pHall_subl sSH' (der_sub 1 H) sylS. split=> // [P sPMH pP | t1Mp]; last first. @@ -246,7 +246,7 @@ without loss symPR: p r P R EpP ErR cPR t1Mp / rewrite sCaPR -(setIidPl sMaMs) -!setIA setIS ?(IH r p) 1?centsC // => _. by case/eqVproper; rewrite // /proper sCaPR andbF. do [rewrite !subsetI !subsetIl /=; set cRCaP := _ \subset _] in symPR *. -pose Mz := 'O_(if cRCaP then \sigma(M) else \alpha(M))(M); pose C := 'C_Mz(P). +pose Mz := 'O_(if cRCaP then \sigma(M) else \alpha(M))(M); pose C := 'C_Mz(P). suffices: C \subset 'C(R) by rewrite /C /Mz /cRCaP; case: ifP => // ->. have sMzMs: Mz \subset Ms by rewrite /Mz; case: ifP => // _. have sCMs: C \subset Ms by rewrite subIset ?sMzMs. @@ -276,7 +276,7 @@ have [sPH sRH] := (subset_trans cPP sCPH, subset_trans cPR sCPH). have [sSM sSH] := (subset_trans sSMs sMsM, subset_trans cPS sCPH). have [sQM sQH] := (subset_trans sQS sSM, subset_trans sQS sSH). have ntMsH_R: [~: Ms :&: H, R] != 1. - by rewrite (subG1_contra _ ntQ) ?commSg // subsetI sSMs. + by rewrite (subG1_contra _ ntQ) ?commSg // subsetI sSMs. have sR_EH: R \subset E :&: H by apply/subsetIP. have ntMsH_MH: [~: Ms :&: H, M :&: H] != 1. by rewrite (subG1_contra _ ntMsH_R) ?commgS // (subset_trans sR_EH) ?setSI. @@ -308,7 +308,7 @@ have ntHa: H`_\alpha != 1 by rewrite (subG1_contra _ ntCHaRQ) ?subsetIl. have uniqNQ: 'M('N(Q)) = [set H]. apply: contraNeq ntCHaRQ; rewrite joingC. by case/(cent_Malpha_reg_tau1 _ _ r'q ErH_R) => //; case=> //= _ -> _. -have maxNQ_H: H \in 'M('N(Q)) :\ M by rewrite uniqNQ !inE neqHM /=. +have maxNQ_H: H \in 'M('N(Q)) :\ M by rewrite uniqNQ !inE neqHM /=. have{maxNQ_H} [_ _] := sigma_subgroup_embedding maxM sMq sQM qQ ntQ maxNQ_H. have [sHq [_ st1HM [_ ntMa]] | _ [_ _ sM'MH]] := ifP; last first. have piPp: p \in \pi(P) by rewrite -p_rank_gt0 p_rank_abelem ?dimP. @@ -590,7 +590,7 @@ move=> [maxM maxL notMGL] [t1Mp t1Lp EpP] [sylQ sylU nQP nUP]. move=> [regPQ regPU] [sNQL sNUM]; rewrite setIC in sylU. (* for symmetry *) have notLGM: gval M \notin L :^: G by rewrite orbit_sym. (* for symmetry *) have{EpP} [ntP [sPML abelP dimP]] := (nt_pnElem EpP isT, pnElemP EpP). -have{sPML} [[sPM sPL] [pP _ _]] := (subsetIP sPML, and3P abelP). +have{sPML} [[sPM sPL] [pP _ _]] := (subsetIP sPML, and3P abelP). have solCP: solvable 'C(P) by rewrite mFT_sol ?mFT_cent_proper. pose Qprops M q Q := [&& q.-Sylow(M) Q, q != p, q \notin \beta(M), 'C_(M`_\beta)(P) != 1 & 'C_(M`_\beta)(P <*> Q) == 1]. @@ -662,7 +662,7 @@ have{ntX} sHM: H \subset M. by rewrite beta_norm_sub_mmax // /psubgroup (subset_trans sYMb). have [_ trCY _] := sigma_group_trans maxM (beta_sub_sigma maxM bMt) tY. have [|| h cYh /= defMg] := (atransP2 trCY) M (M :^ g). - - by rewrite inE orbit_refl (subset_trans (normG _) sNY_M). + - by rewrite inE orbit_refl (subset_trans (normG _) sNY_M). - by rewrite inE mem_orbit ?in_setT. by rewrite defMg conjGid // (subsetP sNY_M) ?(subsetP (cent_sub _)) in sHMg. have sXMb: X \subset M`_\beta. @@ -743,7 +743,7 @@ have{not_pM'} [R ErR nQR]: exists2 R, R \in 'E_r^1('C_M(P)) & R \subset 'N(Q). have [T [sylT nTP sRT]] := coprime_Hall_subset nKP coKP solK sRK rR nRP. have [x cKPx defS] := coprime_Hall_trans nKP coKP solK sylS_K nSP sylT nTP. rewrite -(conjGid (subsetP (setSI _ sKM) x cKPx)). - by exists (R :^ x)%G; rewrite ?pnElemJ ?(subset_trans _ nQS) // defS conjSg. + by exists (R :^ x)%G; rewrite ?pnElemJ ?(subset_trans _ nQS) // defS conjSg. have [sRcMP abelR _] := pnElemP ErR; have ntR := nt_pnElem ErR isT. have{sRcMP abelR} [[sRM cPR] [rR _]] := (subsetIP sRcMP, andP abelR). have sNR_L: 'N(R) \subset L. @@ -957,7 +957,7 @@ have{hallE2} E2_1: E2 :==: 1. apply/idPn; rewrite -rank_gt0; have [p _ ->] := rank_witness E2. rewrite p_rank_gt0 => /(pnatPpi (pHall_pgroup hallE2))t2p. have [A Ep2A _] := ex_tau2Elem hallE t2p. - by apply: not_regE3Ms; case: (tau2_regular maxM complEi t2p Ep2A). + by apply: not_regE3Ms; case: (tau2_regular maxM complEi t2p Ep2A). have [_ ntE1 [cycE1 cycE3] [defE _] _] := sigma_compl_context maxM complEi. rewrite (eqP E2_1) sdprod1g in defE; have{ntE1} ntE1 := ntE1 E2_1. have [nsE3E _ mulE31 nE31 _] := sdprod_context defE. @@ -977,7 +977,7 @@ have [p Ep1X] := nElemP EpX; have [sXE abelX oX] := pnElemPcard Ep1X. have [p_pr ntX] := (pnElem_prime Ep1X, nt_pnElem Ep1X isT). have tau31p: p \in [predU \tau3(M) & \tau1(M)]. rewrite (pgroupP (pgroupS sXE _)) ?oX // -mulE31 pgroupM. - rewrite (sub_pgroup _ t3E3) => [|q t3q]; last by rewrite inE /= t3q. + rewrite (sub_pgroup _ t3E3) => [|q t3q]; last by rewrite inE /= t3q. by rewrite (sub_pgroup _ t1E1) // => q t1q; rewrite inE /= t1q orbT. have [/= t3p | t1p] := orP tau31p. rewrite (char_normal_trans _ nsE3E) ?sub_cyclic_char //. @@ -1028,7 +1028,7 @@ have [sLq t12Lp]: q \in \sigma(L) /\ (p \in \tau1(L)) || (p \in \tau2(L)). rewrite -subG1 quotient_sub1 ?subsetI ?sPE // (subset_trans sPE) //. by rewrite normsI ?normG ?norms_cent. have [maxL sNL] := setIdP maxNL; have sEL := subset_trans nAE sNL. -have sL'p: p \in \sigma(L)^' by move: t12Lp; rewrite -andb_orr => /andP[]. +have sL'p: p \in \sigma(L)^' by move: t12Lp; rewrite -andb_orr => /andP[]. have [sPL sL'P] := (subset_trans sPE sEL, pi_pgroup pP sL'p). have{sL'P} [F hallF sPF] := Hall_superset (mmax_sol maxL) sPL sL'P. have solF := sigma_compl_sol hallF. |
