diff options
| author | Cyril Cohen | 2017-11-23 16:33:36 +0100 |
|---|---|---|
| committer | Cyril Cohen | 2018-02-06 13:54:37 +0100 |
| commit | fafd4dac5315e1d4e071b0044a50a16360b31964 (patch) | |
| tree | 5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/odd_order/BGsection10.v | |
| parent | 835467324db450c8fb8971e477cc4d82fa3e861b (diff) | |
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/odd_order/BGsection10.v')
| -rw-r--r-- | mathcomp/odd_order/BGsection10.v | 30 |
1 files changed, 15 insertions, 15 deletions
diff --git a/mathcomp/odd_order/BGsection10.v b/mathcomp/odd_order/BGsection10.v index 5a61e25..dbe9c6b 100644 --- a/mathcomp/odd_order/BGsection10.v +++ b/mathcomp/odd_order/BGsection10.v @@ -108,7 +108,7 @@ Lemma MalphaJ x : (H :^ x)`_\alpha = H`_\alpha :^ x. Proof. by rewrite /alpha_core -(eq_pcore H (alphaJ x)) pcoreJ. Qed. Lemma betaJ x : \beta(H :^ x) =i \beta(H). -Proof. +Proof. move=> p; apply/forall_inP/forall_inP=> nnSylH P sylP. by rewrite -(@narrowJ _ _ _ x) nnSylH ?pHallJ2. by rewrite -(@narrowJ _ _ _ x^-1) nnSylH // -(pHallJ2 _ _ _ x) actKV. @@ -136,7 +136,7 @@ Hypothesis maxM : M \in 'M. (* This is the first inclusion in the remark following the preliminary *) (* definitions in B & G, p. 70. *) Remark beta_sub_alpha : {subset \beta(M) <= \alpha(M)}. -Proof. +Proof. move=> p; rewrite !inE /= => /forall_inP nnSylM. have [P sylP] := Sylow_exists p M; have:= nnSylM P sylP. by rewrite negb_imply (p_rank_Sylow sylP) => /andP[]. @@ -221,7 +221,7 @@ Implicit Type A E H K M N P Q R S V W X Y : {group gT}. Theorem sigma_Sylow_trans M p X g : p \in \sigma(M) -> p.-Sylow(M) X -> X :^ g \subset M -> g \in M. Proof. -move=> sMp sylX sXgM; have pX := pHall_pgroup sylX. +move=> sMp sylX sXgM; have pX := pHall_pgroup sylX. have [|h hM /= sXghX] := Sylow_Jsub sylX sXgM; first by rewrite pgroupJ. by rewrite -(groupMr _ hM) (subsetP (norm_sigma_Sylow _ sylX)) ?inE ?conjsgM. Qed. @@ -369,7 +369,7 @@ move=> hallH; have [sHM sH _] := and3P hallH. rewrite -(Sylow_gen H) gen_subG; apply/bigcupsP=> P /SylowP[p p_pr sylP]. have [-> | ntP] := eqsVneq P 1; first by rewrite sub1G. have [sPH pP _] := and3P sylP; have{ntP} [_ p_dv_P _] := pgroup_pdiv pP ntP. -have{p_dv_P} s_p: p \in \sigma(M) := pgroupP (pgroupS sPH sH) p p_pr p_dv_P. +have{p_dv_P} s_p: p \in \sigma(M) := pgroupP (pgroupS sPH sH) p p_pr p_dv_P. have{sylP} sylP: p.-Sylow(M) P := subHall_Sylow hallH s_p sylP. have [sPM nMP] := (pHall_sub sylP, norm_sigma_Sylow s_p sylP). have sylP_G := sigma_Sylow_G maxM s_p sylP. @@ -378,7 +378,7 @@ have defG': G^`(1) = G. by have [?|//] := simpG _ (der_normal 1 _); case/derG1P: (mFT_nonAbelian gT). rewrite -subsetIidl -{1}(setIT P) -defG'. rewrite (focal_subgroup_gen sylP_G) (focal_subgroup_gen sylP) genS //. -apply/subsetP=> _ /imset2P[x g Px /setIdP[Gg Pxg] ->]. +apply/subsetP=> _ /imset2P[x g Px /setIdP[Gg Pxg] ->]. pose X := <[x]>; have sXM : X \subset M by rewrite cycle_subG (subsetP sPM). have sXgM: X :^ g \subset M by rewrite -cycleJ cycle_subG (subsetP sPM). have [trMX _ _] := sigma_group_trans maxM s_p (mem_p_elt pP Px). @@ -399,7 +399,7 @@ Qed. (* This is B & G, Theorem 10.2(b1). *) Theorem Msigma_Hall : \sigma(M).-Hall(M) M`_\sigma. -Proof. +Proof. have [H hallH] := Hall_exists \sigma(M) solM; have [sHM sH _] := and3P hallH. rewrite /M`_\sigma (normal_Hall_pcore hallH) // -(quotientGK nsMaM). rewrite -(quotientGK (normalS _ sHM nsMaM)) ?cosetpre_normal //; last first. @@ -420,7 +420,7 @@ Qed. (* This is B & G, Theorem 10.2(b2). *) Theorem Msigma_Hall_G : \sigma(M).-Hall(G) M`_\sigma. -Proof. +Proof. rewrite pHallE subsetT /= eqn_dvd {1}(card_Hall Msigma_Hall). rewrite partn_dvd ?cardG_gt0 ?cardSg ?subsetT //=. apply/dvdn_partP; rewrite ?part_gt0 // => p. @@ -501,7 +501,7 @@ rewrite leq_eqVlt; case: ltngtP => // rCPB _. have: 2 < 'r('C(B)) by rewrite (leq_trans rCPB) ?rankS ?subsetIr. by apply: cent_rank3_Uniqueness; rewrite -dimB -rank_abelem. have cPX: P \subset 'C(X). - have EpPB: B \in 'E_p(P) by apply/pElemP. + have EpPB: B \in 'E_p(P) by apply/pElemP. have coPX: coprime #|P| #|X| := coprimeSg sPMa coMaX. rewrite centsC (coprime_odd_faithful_cent_abelem EpPB) ?mFT_odd //. rewrite -(setIid 'C(B)) setIA (pmaxElem_LdivP p_pr _) 1?centsC //. @@ -606,7 +606,7 @@ have [P sylP sXP] := Sylow_superset sXM pX; have [sPM pP _] := and3P sylP. pose T := 'Ohm_1('Z(P)); pose A := X <*> T; have nilP := pgroup_nil pP. have charT: T \char P by apply/gFchar_trans/gFchar. have neqTX: T != X. - apply: contraNneq s'p => defX; apply/exists_inP; exists P => //. + apply: contraNneq s'p => defX; apply/exists_inP; exists P => //. by rewrite (subset_trans _ sNXM) // -defX char_norms. have rP: 'r(P) = 2 by rewrite (rank_Sylow sylP) rpM2. have ntT: T != 1 by rewrite Ohm1_eq1 center_nil_eq1 // -rank_gt0 rP. @@ -626,7 +626,7 @@ Qed. End OneMaximal. (* This is B & G, Theorem 10.6. *) -Theorem mFT_proper_plength1 p H : H \proper G -> p.-length_1 H. +Theorem mFT_proper_plength1 p H : H \proper G -> p.-length_1 H. Proof. case/mmax_exists=> M /setIdP[maxM sHM]. suffices{H sHM}: p.-length_1 M by apply: plength1S. @@ -765,7 +765,7 @@ have sQyxP: Q :^ (y * x) \subset P. by rewrite actM (subset_trans _ sRxP) // -(normP nRy) !conjSg. have [t tNP defQx] := mFT_sub_Sylow_trans sQP sQxP. have [z zNP defQxy] := mFT_sub_Sylow_trans sQP sQyxP. -by rewrite inE -(conjSg _ _ x) -actM /= defQx defQxy !(normsP nQ_NP). +by rewrite inE -(conjSg _ _ x) -actM /= defQx defQxy !(normsP nQ_NP). Qed. End OneSylow. @@ -904,7 +904,7 @@ have{nilM'W} nilW: nilpotent W. rewrite -(Lagrange_index (subsetIr _ _) (pcore_sub _ _)) pnat_mul //. rewrite -(divgS (pcore_sub _ _)) -card_quotient ?normsI ?normG //= -pgroupE. rewrite (pi_p'group qWWM') //= -(dprod_card (nilpotent_pcoreC p nilM'W)). - by rewrite mulKn ?cardG_gt0 // -pgroupE pcore_pgroup. + by rewrite mulKn ?cardG_gt0 // -pgroupE pcore_pgroup. have [[sWqW qWq _] [sWpW pWp _]] := (and3P sylWq, and3P sylWp). have <-: Wp * Wq = W. apply/eqP; rewrite eqEcard mul_subG //= -(partnC q (cardG_gt0 W)). @@ -929,7 +929,7 @@ split=> // [a_p | {part1}sylX]. have ltCMX_G := sub_proper_trans (subsetIl M 'C(X)) ltMG. have [P sylP cPX] := part1; have s_p := alpha_sub_sigma maxM a_p. have{sylP} sylP := subHall_Sylow hallMs s_p sylP. - apply: rank3_Uniqueness ltCMX_G (leq_trans a_p _). + apply: rank3_Uniqueness ltCMX_G (leq_trans a_p _). by rewrite -(rank_Sylow sylP) rankS //= subsetI (pHall_sub sylP) // centsC. do [move: sWXM'; rewrite (joing_idPr (pHall_sub sylX)) => sWM'] in hallW. have nMbX: X \subset 'N(M`_\beta) := subset_trans sXM (normal_norm nsMbM). @@ -1151,7 +1151,7 @@ have rZle1: 'r(Z) <= 1. rewrite -(TI_pcoreC \sigma(M) M 'F(M)) subsetI commg_subl commg_subr. by rewrite (subset_trans sZM) ?gFnorm ?gFsub_trans. have{rZle1} cycZ: cyclic Z. - have nilZ: nilpotent Z := nilpotentS (gFsub _ _) Fnil. + have nilZ: nilpotent Z := nilpotentS (gFsub _ _) Fnil. by rewrite nil_Zgroup_cyclic // odd_rank1_Zgroup // mFT_odd. have cZM': M^`(1) \subset 'C_M(Z). rewrite der1_min ?normsI ?normG ?norms_cent //= -ker_conj_aut. @@ -1453,7 +1453,7 @@ case/andP=> /pElemP[_ abelF] ltAF; have [pF cFF _] := and3P abelF. apply: uniq_mmaxS sAR (mFT_pgroup_proper pR) _. have rCAgt2: 'r('C(A)) > 2. rewrite -dimA (leq_trans (properG_ltn_log pF ltAF)) // -(rank_abelem abelF). - by rewrite rankS // centsC (subset_trans (proper_sub ltAF)). + by rewrite rankS // centsC (subset_trans (proper_sub ltAF)). by apply: cent_rank3_Uniqueness rCAgt2; rewrite (rank_abelem abelA) dimA. Qed. |
