diff options
| author | Cyril Cohen | 2017-11-23 16:33:36 +0100 |
|---|---|---|
| committer | Cyril Cohen | 2018-02-06 13:54:37 +0100 |
| commit | fafd4dac5315e1d4e071b0044a50a16360b31964 (patch) | |
| tree | 5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/odd_order/BGappendixAB.v | |
| parent | 835467324db450c8fb8971e477cc4d82fa3e861b (diff) | |
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/odd_order/BGappendixAB.v')
| -rw-r--r-- | mathcomp/odd_order/BGappendixAB.v | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/mathcomp/odd_order/BGappendixAB.v b/mathcomp/odd_order/BGappendixAB.v index 1dc4472..eb708a6 100644 --- a/mathcomp/odd_order/BGappendixAB.v +++ b/mathcomp/odd_order/BGappendixAB.v @@ -73,7 +73,7 @@ suffices IH gT (E : {group gT}) x y (G := <<[set x; y]>>) : by rewrite -cRA !commgSS ?sub1set. move: {2}_.+1 (ltnSn #|E|) => n; elim: n => // n IHn in gT E x y G *. rewrite ltnS => leEn /and3P[oddG pE nEG] /and3P[/andP[p_x cRx] p_y cRy]. -have [Gx Gy]: x \in G /\ y \in G by apply/andP; rewrite -!sub1set -join_subG. +have [Gx Gy]: x \in G /\ y \in G by apply/andP; rewrite -!sub1set -join_subG. apply: wlog_neg => p'Gc; apply/pgroupP=> q q_pr qGc; apply/idPn => p'q. have [Q sylQ] := Sylow_exists q [group of G]. have [sQG qQ]: Q \subset G /\ q.-group Q by case/and3P: sylQ. @@ -130,7 +130,7 @@ case ncxy: (rG x *m rG y == rG y *m rG x). rewrite -defC inE groupR //= !repr_mxM ?groupM ?groupV // mul1mx -/rG. by rewrite (eqP ncxy) -!repr_mxM ?groupM ?groupV // mulKg mulVg repr_mx1. rewrite [_^`(1)](commG1P _) ?pgroup1 //= quotient_gen -gen_subG //= -/G. - rewrite !gen_subG centsC gen_subG quotient_cents2r ?gen_subG //= -/G. + rewrite !gen_subG centsC gen_subG quotient_cents2r ?gen_subG //= -/G. rewrite /commg_set imset2Ul !imset2_set1l !imsetU !imset_set1. by rewrite !subUset andbC !sub1set !commgg group1 /= -invg_comm groupV Cxy. pose Ax : 'M(E) := rG x - 1; pose Ay : 'M(E) := rG y - 1. @@ -231,7 +231,7 @@ Qed. Theorem odd_abelian_gen_constrained : 'O_p^'(G) = 1 -> 'C_('O_p(G))(P) \subset P -> X \subset 'O_p(G). Proof. -set Q := 'O_p(G) => p'G1 sCQ_P. +set Q := 'O_p(G) => p'G1 sCQ_P. have sPQ: P \subset Q by rewrite pcore_max. have defQ: 'O_{p^', p}(G) = Q by rewrite pseries_pop2. have pQ: p.-group Q by apply: pcore_pgroup. @@ -460,7 +460,7 @@ have sylCS: p.-Sylow(C) (C :&: S) := Sylow_setI_normal nsCG sylS. have{defC} defC: 'C_G(Y) * (C :&: S) = C. apply/eqP; rewrite eqEsubset mulG_subG sCY_C subsetIl /=. have nCY_C: C \subset 'N('C_G(Y)). - exact: subset_trans (normal_sub nsCG) (normal_norm nsCY_G). + exact: subset_trans (normal_sub nsCG) (normal_norm nsCY_G). rewrite -quotientSK // -defC /= -pseries1. rewrite -(pseries_catr_id [:: p : nat_pred]) (pseries_rcons_id [::]) /=. rewrite pseries1 /= pseries1 defC pcore_sub_Hall // morphim_pHall //. |
