diff options
| author | Maxime Dénès | 2017-10-30 14:16:48 +0100 |
|---|---|---|
| committer | Maxime Dénès | 2017-10-30 14:16:48 +0100 |
| commit | e1b1743fb6aaed042d5e6762ea76c3242593ab1d (patch) | |
| tree | f2c7a9504fe1a1a39a9015a771bf07eba1696ca8 /mathcomp/fingroup | |
| parent | d5437703555329168288467dc1a94b1176e1776e (diff) | |
Fix obsolete vernacular syntax for locality.
It was emitting a deprecation warning and will soon be removed from Coq.
Diffstat (limited to 'mathcomp/fingroup')
| -rw-r--r-- | mathcomp/fingroup/fingroup.v | 2 | ||||
| -rw-r--r-- | mathcomp/fingroup/gproduct.v | 2 | ||||
| -rw-r--r-- | mathcomp/fingroup/morphism.v | 2 | ||||
| -rw-r--r-- | mathcomp/fingroup/perm.v | 4 |
4 files changed, 5 insertions, 5 deletions
diff --git a/mathcomp/fingroup/fingroup.v b/mathcomp/fingroup/fingroup.v index 06a1806..9d7bcc8 100644 --- a/mathcomp/fingroup/fingroup.v +++ b/mathcomp/fingroup/fingroup.v @@ -1242,7 +1242,7 @@ Structure group_type : Type := Group { }. Definition group_of of phant gT : predArgType := group_type. -Notation Local groupT := (group_of (Phant gT)). +Local Notation groupT := (group_of (Phant gT)). Identity Coercion type_of_group : group_of >-> group_type. Canonical group_subType := Eval hnf in [subType for gval]. diff --git a/mathcomp/fingroup/gproduct.v b/mathcomp/fingroup/gproduct.v index 4ee2bc8..94304c4 100644 --- a/mathcomp/fingroup/gproduct.v +++ b/mathcomp/fingroup/gproduct.v @@ -1337,7 +1337,7 @@ Hypothesis nHK : K \subset 'N(H). Hypothesis actf : {in H & K, morph_act 'J 'J fH fK}. Hypothesis eqfHK : {in H :&: K, fH =1 fK}. -Notation Local f := (pprodm nHK actf eqfHK). +Local Notation f := (pprodm nHK actf eqfHK). Lemma pprodmE x a : x \in H -> a \in K -> f (x * a) = fH x * fK a. Proof. diff --git a/mathcomp/fingroup/morphism.v b/mathcomp/fingroup/morphism.v index 9f0a900..2a70706 100644 --- a/mathcomp/fingroup/morphism.v +++ b/mathcomp/fingroup/morphism.v @@ -1006,7 +1006,7 @@ Variables (G : {group gT}) (H : {group hT}). Variable f : {morphism G >-> hT}. Variable g : {morphism H >-> rT}. -Notation Local gof := (mfun g \o mfun f). +Local Notation gof := (mfun g \o mfun f). Lemma comp_morphM : {in f @*^-1 H &, {morph gof: x y / x * y}}. Proof. diff --git a/mathcomp/fingroup/perm.v b/mathcomp/fingroup/perm.v index a306475..6d9abdc 100644 --- a/mathcomp/fingroup/perm.v +++ b/mathcomp/fingroup/perm.v @@ -87,8 +87,8 @@ Bind Scope group_scope with perm_of. Notation "''S_' n" := {perm 'I_n} (at level 8, n at level 2, format "''S_' n"). -Notation Local fun_of_perm_def := (fun T (u : perm_type T) => val u : T -> T). -Notation Local perm_def := (fun T f injf => Perm (@perm_proof T f injf)). +Local Notation fun_of_perm_def := (fun T (u : perm_type T) => val u : T -> T). +Local Notation perm_def := (fun T f injf => Perm (@perm_proof T f injf)). Module Type PermDefSig. Parameter fun_of_perm : forall T, perm_type T -> T -> T. |
