diff options
| author | Jasper Hugunin | 2018-03-04 16:57:06 -0800 |
|---|---|---|
| committer | Jasper Hugunin | 2018-03-04 16:57:06 -0800 |
| commit | 2525c33691e25f837b7dca31d4c702199b3dbc5d (patch) | |
| tree | 7937f252a0818909c715ccc20f3611a4f5c482d5 /mathcomp/fingroup | |
| parent | 6f075b64b936de9ee4fa79ea4dc1d2fb9b9cf2c8 (diff) | |
Change deprecated Arguments Scope to Arguments
Diffstat (limited to 'mathcomp/fingroup')
| -rw-r--r-- | mathcomp/fingroup/action.v | 52 | ||||
| -rw-r--r-- | mathcomp/fingroup/automorphism.v | 6 | ||||
| -rw-r--r-- | mathcomp/fingroup/fingroup.v | 55 | ||||
| -rw-r--r-- | mathcomp/fingroup/gproduct.v | 17 | ||||
| -rw-r--r-- | mathcomp/fingroup/morphism.v | 21 | ||||
| -rw-r--r-- | mathcomp/fingroup/perm.v | 2 | ||||
| -rw-r--r-- | mathcomp/fingroup/presentation.v | 28 | ||||
| -rw-r--r-- | mathcomp/fingroup/quotient.v | 6 |
8 files changed, 88 insertions, 99 deletions
diff --git a/mathcomp/fingroup/action.v b/mathcomp/fingroup/action.v index 6478c81..5c5dcdc 100644 --- a/mathcomp/fingroup/action.v +++ b/mathcomp/fingroup/action.v @@ -148,11 +148,10 @@ End ActionDef. (* Need to close the Section here to avoid re-declaring all Argument Scopes *) Delimit Scope action_scope with act. Bind Scope action_scope with action. -Arguments Scope act_morph [_ group_scope _ _ group_scope]. -Arguments Scope is_action [_ group_scope _ _]. -Arguments Scope act - [_ group_scope type_scope action_scope group_scope group_scope]. -Arguments Scope clone_action [_ group_scope type_scope action_scope _]. +Arguments act_morph _ _%g _ _ _%g : extra scopes. +Arguments is_action _ _%g _ _. +Arguments act _ _%g _%type _%act _%g _%g. +Arguments clone_action _ _%g _%type _%act _. Notation "{ 'action' aT &-> T }" := (action [set: aT] T) (at level 0, format "{ 'action' aT &-> T }") : type_scope. @@ -211,16 +210,15 @@ Definition faithful A S to := A :&: astab S to \subset [1]. End ActionDefs. -Arguments Scope setact [_ group_scope _ action_scope group_scope group_scope]. -Arguments Scope orbit [_ group_scope _ action_scope group_scope group_scope]. -Arguments Scope amove - [_ group_scope _ action_scope group_scope group_scope group_scope]. -Arguments Scope afix [_ group_scope _ action_scope group_scope]. -Arguments Scope astab [_ group_scope _ group_scope action_scope]. -Arguments Scope astabs [_ group_scope _ group_scope action_scope]. -Arguments Scope acts_on [_ group_scope _ group_scope group_scope action_scope]. -Arguments Scope atrans [_ group_scope _ group_scope group_scope action_scope]. -Arguments Scope faithful [_ group_scope _ group_scope group_scope action_scope]. +Arguments setact _ _%g _ _%act _%g _%g. +Arguments orbit _ _%g _ _%act _%g _%g. +Arguments amove _ _%g _ _%act _%g _%g _%g. +Arguments afix _ _%g _ _%act _%g. +Arguments astab _ _%g _ _%g _%act. +Arguments astabs _ _%g _ _%g _%act. +Arguments acts_on _ _%g _ _%g _%g _%act. +Arguments atrans _ _%g _ _%g _%g _%act. +Arguments faithful _ _%g _ _%g _%g _%act. Notation "to ^*" := (setact to) (at level 2, format "to ^*") : fun_scope. @@ -877,8 +875,7 @@ Qed. End PartialAction. -Arguments Scope orbit_transversal - [_ group_scope _ action_scope group_scope group_scope]. +Arguments orbit_transversal _ _%g _ _%act _%g _%g. Arguments orbit_in_eqP [aT D rT to G x y]. Arguments orbit1P [aT D rT to G x]. Arguments contra_orbit [aT D rT] to G [x y]. @@ -1748,7 +1745,7 @@ Qed. End AutIn. -Arguments Scope Aut_in [_ group_scope group_scope]. +Arguments Aut_in _ _%g _%g. Section InjmAutIn. @@ -1825,9 +1822,9 @@ End GroupAction. Delimit Scope groupAction_scope with gact. Bind Scope groupAction_scope with groupAction. -Arguments Scope is_groupAction [_ _ group_scope group_scope action_scope]. -Arguments Scope groupAction [_ _ group_scope group_scope]. -Arguments Scope gact [_ _ group_scope group_scope groupAction_scope]. +Arguments is_groupAction _ _ _%g _%g _%act. +Arguments groupAction _ _ _%g _%g. +Arguments gact _ _ _%g _%g _%gact. Notation "[ 'groupAction' 'of' to ]" := (clone_groupAction (@GroupAction _ _ _ _ to)) @@ -1854,12 +1851,9 @@ Definition acts_irreducibly A S to := End GroupActionDefs. -Arguments Scope gacent - [_ _ group_scope group_scope groupAction_scope group_scope]. -Arguments Scope acts_on_group - [_ _ group_scope group_scope group_scope group_scope groupAction_scope]. -Arguments Scope acts_irreducibly - [_ _ group_scope group_scope group_scope group_scope groupAction_scope]. +Arguments gacent _ _ _%g _%g _%gact _%g. +Arguments acts_on_group _ _ _%g _%g _%g _%g _%gact. +Arguments acts_irreducibly _ _ _%g _%g _%g _%g _%gact. Notation "''C_' ( | to ) ( A )" := (gacent to A) (at level 8, format "''C_' ( | to ) ( A )") : group_scope. @@ -2715,8 +2709,8 @@ Canonical aut_groupAction := GroupAction autact_is_groupAction. End AutAct. -Arguments Scope aut_action [_ group_scope]. -Arguments Scope aut_groupAction [_ group_scope]. +Arguments aut_action _ _%g. +Arguments aut_groupAction _ _%g. Notation "[ 'Aut' G ]" := (aut_action G) : action_scope. Notation "[ 'Aut' G ]" := (aut_groupAction G) : groupAction_scope. diff --git a/mathcomp/fingroup/automorphism.v b/mathcomp/fingroup/automorphism.v index e727aba..b1c9d94 100644 --- a/mathcomp/fingroup/automorphism.v +++ b/mathcomp/fingroup/automorphism.v @@ -115,7 +115,7 @@ Qed. End Automorphism. -Arguments Scope Aut [_ group_scope]. +Arguments Aut _ _%g. Notation "[ 'Aut' G ]" := (Aut_group G) (at level 0, format "[ 'Aut' G ]") : Group_scope. Notation "[ 'Aut' G ]" := (Aut G) @@ -340,7 +340,7 @@ Proof. by apply/subsetP=> _ /imsetP[x _ ->]; apply: Aut_aut. Qed. End ConjugationMorphism. -Arguments Scope conjgm [_ group_scope]. +Arguments conjgm _ _%g. Prenex Implicits conjgm conj_aut. Reserved Notation "G \char H" (at level 70). @@ -447,7 +447,7 @@ Qed. End Characteristicity. -Arguments Scope characteristic [_ group_scope group_scope]. +Arguments characteristic _ _%g _%g. Notation "H \char G" := (characteristic H G) : group_scope. Hint Resolve char_refl. diff --git a/mathcomp/fingroup/fingroup.v b/mathcomp/fingroup/fingroup.v index 5afc3c7..b43036b 100644 --- a/mathcomp/fingroup/fingroup.v +++ b/mathcomp/fingroup/fingroup.v @@ -791,25 +791,24 @@ Definition centralised A := forall x, centralises x A. End GroupSetMulDef. -Arguments Scope lcoset [_ group_scope group_scope]. -Arguments Scope rcoset [_ group_scope group_scope]. -Arguments Scope rcosets [_ group_scope group_scope]. -Arguments Scope lcosets [_ group_scope group_scope]. -Arguments Scope indexg [_ group_scope group_scope]. -Arguments Scope conjugate [_ group_scope group_scope]. -Arguments Scope conjugates [_ group_scope group_scope]. -Arguments Scope class [_ group_scope group_scope]. -Arguments Scope classes [_ group_scope]. -Arguments Scope class_support [_ group_scope group_scope]. -Arguments Scope commg_set [_ group_scope group_scope]. -Arguments Scope normaliser [_ group_scope]. -Arguments Scope centraliser [_ group_scope]. -Arguments Scope abelian [_ group_scope]. -Arguments Scope normal [_ group_scope group_scope]. -Arguments Scope centralised [_ group_scope]. -Arguments Scope normalised [_ group_scope]. -Arguments Scope centralises [_ group_scope group_scope]. -Arguments Scope centralised [_ group_scope]. +Arguments lcoset _ _%g _%g. +Arguments rcoset _ _%g _%g. +Arguments rcosets _ _%g _%g. +Arguments lcosets _ _%g _%g. +Arguments indexg _ _%g _%g. +Arguments conjugate _ _%g _%g. +Arguments conjugates _ _%g _%g. +Arguments class _ _%g _%g. +Arguments classes _ _%g. +Arguments class_support _ _%g _%g. +Arguments commg_set _ _%g _%g. +Arguments normaliser _ _%g. +Arguments centraliser _ _%g. +Arguments abelian _ _%g. +Arguments normal _ _%g _%g. +Arguments normalised _ _%g. +Arguments centralises _ _%g _%g. +Arguments centralised _ _%g. Notation "[ 1 gT ]" := (1 : {set gT}) : group_scope. Notation "[ 1 ]" := [1 FinGroup.sort _] : group_scope. @@ -1312,9 +1311,9 @@ Arguments group_setP [gT A]. Prenex Implicits group_set mulsgP set1gP. Prenex Implicits lcosetP lcosetsP rcosetP rcosetsP group_setP. -Arguments Scope commutator [_ group_scope group_scope]. -Arguments Scope joing [_ group_scope group_scope]. -Arguments Scope generated [_ group_scope]. +Arguments commutator _ _%g _%g. +Arguments joing _ _%g _%g. +Arguments generated _ _%g. Notation "{ 'group' gT }" := (group_of (Phant gT)) (at level 0, format "{ 'group' gT }") : type_scope. @@ -1913,9 +1912,9 @@ End GroupInter. Hint Resolve order_gt0. -Arguments Scope generated_group [_ group_scope]. -Arguments Scope joing_group [_ group_scope group_scope]. -Arguments Scope subgroups [_ group_scope]. +Arguments generated_group _ _%g. +Arguments joing_group _ _%g _%g. +Arguments subgroups _ _%g. Notation "G :&: H" := (setI_group G H) : Group_scope. Notation "<< A >>" := (generated_group A) : Group_scope. @@ -2997,8 +2996,8 @@ Arguments commG1P [gT A B]. Prenex Implicits normP normsP cent1P normalP centP centsP commG1P. -Arguments Scope normaliser_group [_ group_scope]. -Arguments Scope centraliser_group [_ group_scope]. +Arguments normaliser_group _ _%g. +Arguments centraliser_group _ _%g. Notation "''N' ( A )" := (normaliser_group A) : Group_scope. Notation "''C' ( A )" := (centraliser_group A) : Group_scope. @@ -3017,7 +3016,7 @@ Section MinMaxGroup. Variable gT : finGroupType. Variable gP : pred {group gT}. -Arguments Scope gP [Group_scope]. +Arguments gP _%G. Definition maxgroup := maxset (fun A => group_set A && gP <<A>>). Definition mingroup := minset (fun A => group_set A && gP <<A>>). diff --git a/mathcomp/fingroup/gproduct.v b/mathcomp/fingroup/gproduct.v index dc16021..9498de7 100644 --- a/mathcomp/fingroup/gproduct.v +++ b/mathcomp/fingroup/gproduct.v @@ -89,16 +89,13 @@ Definition divgr A B x := x * (remgr A B x)^-1. End Defs. -Arguments Scope partial_product [_ group_scope group_scope]. -Arguments Scope semidirect_product [_ group_scope group_scope]. -Arguments Scope central_product [_ group_scope group_scope]. -Arguments Scope complements_to_in [_ group_scope group_scope]. -Arguments Scope splits_over [_ group_scope group_scope]. -Arguments Scope remgr [_ group_scope group_scope group_scope]. -Arguments Scope divgr [_ group_scope group_scope group_scope]. -Arguments partial_product : clear implicits. -Arguments semidirect_product : clear implicits. -Arguments central_product : clear implicits. +Arguments partial_product _ _%g _%g : clear implicits. +Arguments semidirect_product _ _%g _%g : clear implicits. +Arguments central_product _ _%g _%g : clear implicits. +Arguments complements_to_in _ _%g _%g. +Arguments splits_over _ _%g _%g. +Arguments remgr _ _%g _%g _%g. +Arguments divgr _ _%g _%g _%g. Arguments direct_product : clear implicits. Notation pprod := (partial_product _). Notation sdprod := (semidirect_product _). diff --git a/mathcomp/fingroup/morphism.v b/mathcomp/fingroup/morphism.v index 315358b..32c01d3 100644 --- a/mathcomp/fingroup/morphism.v +++ b/mathcomp/fingroup/morphism.v @@ -144,8 +144,8 @@ Definition ker mph := morphpre mph 1. End MorphismOps1. -Arguments Scope morphim [_ _ group_scope _ _ group_scope]. -Arguments Scope morphpre [_ _ group_scope _ _ group_scope]. +Arguments morphim _ _ _%g _ _ _%g. +Arguments morphpre _ _ _%g _ _ _%g. Notation "''dom' f" := (dom (MorPhantom f)) (at level 10, f at level 8, format "''dom' f") : group_scope. @@ -908,7 +908,7 @@ Proof. exact: morphim_idm. Qed. End IdentityMorphism. -Arguments Scope idm [_ group_scope group_scope]. +Arguments idm _ _%g _%g. Prenex Implicits idm. Section RestrictedMorphism. @@ -967,7 +967,7 @@ Proof. by move <-; exists f. Qed. End RestrictedMorphism. -Arguments Scope restrm [_ _ group_scope group_scope _ group_scope]. +Arguments restrm _ _ _%g _%g _ _%g. Prenex Implicits restrm. Arguments restrmP [aT rT A D]. Arguments domP [aT rT A D]. @@ -994,8 +994,7 @@ Proof. by apply/setIidPl/subsetP=> x _; rewrite !inE /=. Qed. End TrivMorphism. -Arguments Scope trivm [_ _ group_scope group_scope]. -Arguments trivm {aT rT}. +Arguments trivm {aT rT} _%g _%g. (* The composition of two morphisms is a Canonical morphism instance. *) Section MorphismComposition. @@ -1325,10 +1324,10 @@ Proof. exact: restr_isom_to. Qed. End ReflectProp. -Arguments Scope isom [_ _ group_scope group_scope _]. -Arguments Scope morphic [_ _ group_scope _]. -Arguments Scope misom [_ _ group_scope group_scope _]. -Arguments Scope isog [_ _ group_scope group_scope]. +Arguments isom _ _ _%g _%g _. +Arguments morphic _ _ _%g _. +Arguments misom _ _ _%g _%g _. +Arguments isog _ _ _%g _%g. Arguments morphicP [aT rT A f]. Arguments misomP [aT rT A B f]. @@ -1479,7 +1478,7 @@ Qed. End Homg. -Arguments Scope homg [_ _ group_scope group_scope]. +Arguments homg _ _ _%g _%g. Notation "G \homg H" := (homg G H) (at level 70, no associativity) : group_scope. diff --git a/mathcomp/fingroup/perm.v b/mathcomp/fingroup/perm.v index bbf4363..ed5d25b 100644 --- a/mathcomp/fingroup/perm.v +++ b/mathcomp/fingroup/perm.v @@ -79,7 +79,7 @@ End PermDefSection. Notation "{ 'perm' T }" := (perm_of (Phant T)) (at level 0, format "{ 'perm' T }") : type_scope. -Arguments Scope pval [_ group_scope]. +Arguments pval _ _%g. Bind Scope group_scope with perm_type. Bind Scope group_scope with perm_of. diff --git a/mathcomp/fingroup/presentation.v b/mathcomp/fingroup/presentation.v index ad712ee..7e3ad3c 100644 --- a/mathcomp/fingroup/presentation.v +++ b/mathcomp/fingroup/presentation.v @@ -134,17 +134,17 @@ Coercion Formula : formula >-> type. (* Declare (implicitly) the argument scope tags. *) Notation "1" := Idx : group_presentation. -Arguments Scope Inv [group_presentation]. -Arguments Scope Exp [group_presentation nat_scope]. -Arguments Scope Mul [group_presentation group_presentation]. -Arguments Scope Conj [group_presentation group_presentation]. -Arguments Scope Comm [group_presentation group_presentation]. -Arguments Scope Eq1 [group_presentation]. -Arguments Scope Eq2 [group_presentation group_presentation]. -Arguments Scope Eq3 [group_presentation group_presentation group_presentation]. -Arguments Scope And [group_presentation group_presentation]. -Arguments Scope Formula [group_presentation]. -Arguments Scope Cast [group_presentation]. +Arguments Inv _%group_presentation. +Arguments Exp _%group_presentation _%N. +Arguments Mul _%group_presentation _%group_presentation. +Arguments Conj _%group_presentation _%group_presentation. +Arguments Comm _%group_presentation _%group_presentation. +Arguments Eq1 _%group_presentation. +Arguments Eq2 _%group_presentation _%group_presentation. +Arguments Eq3 _%group_presentation _%group_presentation _%group_presentation. +Arguments And _%group_presentation _%group_presentation. +Arguments Formula _%group_presentation. +Arguments Cast _%group_presentation. Infix "*" := Mul : group_presentation. Infix "^+" := Exp : group_presentation. @@ -160,9 +160,9 @@ Notation "( r1 , r2 , .. , rn )" := (* Declare (implicitly) the argument scope tags. *) Notation "x : p" := (fun x => Cast p) : nt_group_presentation. -Arguments Scope Generator [nt_group_presentation]. -Arguments Scope hom [_ group_scope nt_group_presentation]. -Arguments Scope iso [_ group_scope nt_group_presentation]. +Arguments Generator _%nt_group_presentation. +Arguments hom _ _%group_scope _%nt_group_presentation. +Arguments iso _ _%group_scope _%nt_group_presentation. Notation "x : p" := (Generator (x : p)) : group_presentation. diff --git a/mathcomp/fingroup/quotient.v b/mathcomp/fingroup/quotient.v index 99d1aef..06feab2 100644 --- a/mathcomp/fingroup/quotient.v +++ b/mathcomp/fingroup/quotient.v @@ -198,9 +198,9 @@ Lemma quotientE : quotient = coset @* Q. Proof. by []. Qed. End Cosets. -Arguments Scope coset_of [_ group_scope]. -Arguments Scope coset [_ group_scope group_scope]. -Arguments Scope quotient [_ group_scope group_scope]. +Arguments coset_of _ _%g. +Arguments coset _ _%g _%g. +Arguments quotient _ _%g _%g. Prenex Implicits coset_of coset. Bind Scope group_scope with coset_of. |
