diff options
| author | Kazuhiko Sakaguchi | 2018-07-12 20:19:55 +0900 |
|---|---|---|
| committer | Kazuhiko Sakaguchi | 2018-07-12 20:19:55 +0900 |
| commit | 10171942883948c8144ec076ef48eb73f8e49cdd (patch) | |
| tree | e5e5f5ff58fd3b3c07afd49388afcab5cbbe165b /mathcomp/fingroup | |
| parent | b8be28130d6a2a057858e3978c75ee0796630dce (diff) | |
Replace all the CoInductives with Variants
Diffstat (limited to 'mathcomp/fingroup')
| -rw-r--r-- | mathcomp/fingroup/fingroup.v | 2 | ||||
| -rw-r--r-- | mathcomp/fingroup/gproduct.v | 2 | ||||
| -rw-r--r-- | mathcomp/fingroup/morphism.v | 2 | ||||
| -rw-r--r-- | mathcomp/fingroup/perm.v | 2 | ||||
| -rw-r--r-- | mathcomp/fingroup/quotient.v | 2 |
5 files changed, 5 insertions, 5 deletions
diff --git a/mathcomp/fingroup/fingroup.v b/mathcomp/fingroup/fingroup.v index b43036b..959eea1 100644 --- a/mathcomp/fingroup/fingroup.v +++ b/mathcomp/fingroup/fingroup.v @@ -1589,7 +1589,7 @@ Proof. by move=> Gx; rewrite (rcoset_eqP (_ : x \in G :* 1)) mulg1. Qed. (* Elimination form. *) -CoInductive rcoset_repr_spec x : gT -> Type := +Variant rcoset_repr_spec x : gT -> Type := RcosetReprSpec g : g \in G -> rcoset_repr_spec x (g * x). Lemma mem_repr_rcoset x : repr (G :* x) \in G :* x. diff --git a/mathcomp/fingroup/gproduct.v b/mathcomp/fingroup/gproduct.v index 9498de7..986489b 100644 --- a/mathcomp/fingroup/gproduct.v +++ b/mathcomp/fingroup/gproduct.v @@ -132,7 +132,7 @@ Proof. by move=> A; rewrite /pprod eqxx. Qed. Lemma pprodg1 : right_id 1 pprod. Proof. by move=> A; rewrite /pprod eqxx; case: eqP. Qed. -CoInductive are_groups A B : Prop := AreGroups K H of A = K & B = H. +Variant are_groups A B : Prop := AreGroups K H of A = K & B = H. Lemma group_not0 G : set0 <> G. Proof. by move/setP/(_ 1); rewrite inE group1. Qed. diff --git a/mathcomp/fingroup/morphism.v b/mathcomp/fingroup/morphism.v index 32c01d3..3c23921 100644 --- a/mathcomp/fingroup/morphism.v +++ b/mathcomp/fingroup/morphism.v @@ -97,7 +97,7 @@ Definition clone_morphism D f := Variables (D A : {set aT}) (R : {set rT}) (x : aT) (y : rT) (f : aT -> rT). -CoInductive morphim_spec : Prop := MorphimSpec z & z \in D & z \in A & y = f z. +Variant morphim_spec : Prop := MorphimSpec z & z \in D & z \in A & y = f z. Lemma morphimP : reflect morphim_spec (y \in f @: (D :&: A)). Proof. diff --git a/mathcomp/fingroup/perm.v b/mathcomp/fingroup/perm.v index ed5d25b..3edcfed 100644 --- a/mathcomp/fingroup/perm.v +++ b/mathcomp/fingroup/perm.v @@ -220,7 +220,7 @@ Qed. Definition tperm x y := perm (can_inj (tperm_proof x y)). -CoInductive tperm_spec x y z : T -> Type := +Variant tperm_spec x y z : T -> Type := | TpermFirst of z = x : tperm_spec x y z y | TpermSecond of z = y : tperm_spec x y z x | TpermNone of z <> x & z <> y : tperm_spec x y z z. diff --git a/mathcomp/fingroup/quotient.v b/mathcomp/fingroup/quotient.v index 06feab2..03c55b3 100644 --- a/mathcomp/fingroup/quotient.v +++ b/mathcomp/fingroup/quotient.v @@ -569,7 +569,7 @@ Variables (G : {group gT}) (Kbar : {group coset_of H}). Hypothesis nHG : H <| G. -CoInductive inv_quotient_spec (P : pred {group gT}) : Prop := +Variant inv_quotient_spec (P : pred {group gT}) : Prop := InvQuotientSpec K of Kbar :=: K / H & H \subset K & P K. Lemma inv_quotientS : |
