aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/fingroup
diff options
context:
space:
mode:
authorKazuhiko Sakaguchi2018-07-12 20:19:55 +0900
committerKazuhiko Sakaguchi2018-07-12 20:19:55 +0900
commit10171942883948c8144ec076ef48eb73f8e49cdd (patch)
treee5e5f5ff58fd3b3c07afd49388afcab5cbbe165b /mathcomp/fingroup
parentb8be28130d6a2a057858e3978c75ee0796630dce (diff)
Replace all the CoInductives with Variants
Diffstat (limited to 'mathcomp/fingroup')
-rw-r--r--mathcomp/fingroup/fingroup.v2
-rw-r--r--mathcomp/fingroup/gproduct.v2
-rw-r--r--mathcomp/fingroup/morphism.v2
-rw-r--r--mathcomp/fingroup/perm.v2
-rw-r--r--mathcomp/fingroup/quotient.v2
5 files changed, 5 insertions, 5 deletions
diff --git a/mathcomp/fingroup/fingroup.v b/mathcomp/fingroup/fingroup.v
index b43036b..959eea1 100644
--- a/mathcomp/fingroup/fingroup.v
+++ b/mathcomp/fingroup/fingroup.v
@@ -1589,7 +1589,7 @@ Proof. by move=> Gx; rewrite (rcoset_eqP (_ : x \in G :* 1)) mulg1. Qed.
(* Elimination form. *)
-CoInductive rcoset_repr_spec x : gT -> Type :=
+Variant rcoset_repr_spec x : gT -> Type :=
RcosetReprSpec g : g \in G -> rcoset_repr_spec x (g * x).
Lemma mem_repr_rcoset x : repr (G :* x) \in G :* x.
diff --git a/mathcomp/fingroup/gproduct.v b/mathcomp/fingroup/gproduct.v
index 9498de7..986489b 100644
--- a/mathcomp/fingroup/gproduct.v
+++ b/mathcomp/fingroup/gproduct.v
@@ -132,7 +132,7 @@ Proof. by move=> A; rewrite /pprod eqxx. Qed.
Lemma pprodg1 : right_id 1 pprod.
Proof. by move=> A; rewrite /pprod eqxx; case: eqP. Qed.
-CoInductive are_groups A B : Prop := AreGroups K H of A = K & B = H.
+Variant are_groups A B : Prop := AreGroups K H of A = K & B = H.
Lemma group_not0 G : set0 <> G.
Proof. by move/setP/(_ 1); rewrite inE group1. Qed.
diff --git a/mathcomp/fingroup/morphism.v b/mathcomp/fingroup/morphism.v
index 32c01d3..3c23921 100644
--- a/mathcomp/fingroup/morphism.v
+++ b/mathcomp/fingroup/morphism.v
@@ -97,7 +97,7 @@ Definition clone_morphism D f :=
Variables (D A : {set aT}) (R : {set rT}) (x : aT) (y : rT) (f : aT -> rT).
-CoInductive morphim_spec : Prop := MorphimSpec z & z \in D & z \in A & y = f z.
+Variant morphim_spec : Prop := MorphimSpec z & z \in D & z \in A & y = f z.
Lemma morphimP : reflect morphim_spec (y \in f @: (D :&: A)).
Proof.
diff --git a/mathcomp/fingroup/perm.v b/mathcomp/fingroup/perm.v
index ed5d25b..3edcfed 100644
--- a/mathcomp/fingroup/perm.v
+++ b/mathcomp/fingroup/perm.v
@@ -220,7 +220,7 @@ Qed.
Definition tperm x y := perm (can_inj (tperm_proof x y)).
-CoInductive tperm_spec x y z : T -> Type :=
+Variant tperm_spec x y z : T -> Type :=
| TpermFirst of z = x : tperm_spec x y z y
| TpermSecond of z = y : tperm_spec x y z x
| TpermNone of z <> x & z <> y : tperm_spec x y z z.
diff --git a/mathcomp/fingroup/quotient.v b/mathcomp/fingroup/quotient.v
index 06feab2..03c55b3 100644
--- a/mathcomp/fingroup/quotient.v
+++ b/mathcomp/fingroup/quotient.v
@@ -569,7 +569,7 @@ Variables (G : {group gT}) (Kbar : {group coset_of H}).
Hypothesis nHG : H <| G.
-CoInductive inv_quotient_spec (P : pred {group gT}) : Prop :=
+Variant inv_quotient_spec (P : pred {group gT}) : Prop :=
InvQuotientSpec K of Kbar :=: K / H & H \subset K & P K.
Lemma inv_quotientS :