aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/fingroup/presentation.v
diff options
context:
space:
mode:
authorEnrico Tassi2015-03-09 11:07:53 +0100
committerEnrico Tassi2015-03-09 11:24:38 +0100
commitfc84c27eac260dffd8f2fb1cb56d599f1e3486d9 (patch)
treec16205f1637c80833a4c4598993c29fa0fd8c373 /mathcomp/fingroup/presentation.v
Initial commit
Diffstat (limited to 'mathcomp/fingroup/presentation.v')
-rw-r--r--mathcomp/fingroup/presentation.v254
1 files changed, 254 insertions, 0 deletions
diff --git a/mathcomp/fingroup/presentation.v b/mathcomp/fingroup/presentation.v
new file mode 100644
index 0000000..46658d5
--- /dev/null
+++ b/mathcomp/fingroup/presentation.v
@@ -0,0 +1,254 @@
+(* (c) Copyright Microsoft Corporation and Inria. All rights reserved. *)
+Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq fintype finset.
+Require Import fingroup morphism.
+
+(******************************************************************************)
+(* Support for generator-and-relation presentations of groups. We provide the *)
+(* syntax: *)
+(* G \homg Grp (x_1 : ... x_n : (s_1 = t_1, ..., s_m = t_m)) *)
+(* <=> G is generated by elements x_1, ..., x_m satisfying the relations *)
+(* s_1 = t_1, ..., s_m = t_m, i.e., G is a homomorphic image of the *)
+(* group generated by the x_i, subject to the relations s_j = t_j. *)
+(* G \isog Grp (x_1 : ... x_n : (s_1 = t_1, ..., s_m = t_m)) *)
+(* <=> G is isomorphic to the group generated by the x_i, subject to the *)
+(* relations s_j = t_j. This is an intensional predicate (in Prop), as *)
+(* even the non-triviality of a generated group is undecidable. *)
+(* Syntax details: *)
+(* - Grp is a litteral constant. *)
+(* - There must be at least one generator and one relation. *)
+(* - A relation s_j = 1 can be abbreviated as simply s_j (a.k.a. a relator). *)
+(* - Two consecutive relations s_j = t, s_j+1 = t can be abbreviated *)
+(* s_j = s_j+1 = t. *)
+(* - The s_j and t_j are terms built from the x_i and the standard group *)
+(* operators *, 1, ^-1, ^+, ^-, ^, [~ u_1, ..., u_k]; no other operator or *)
+(* abbreviation may be used, as the notation is implemented using static *)
+(* overloading. *)
+(* - This is the closest we could get to the notation used in Aschbacher, *)
+(* Grp (x_1, ... x_n : t_1,1 = ... = t_1,k1, ..., t_m,1 = ... = t_m,km) *)
+(* under the current limitations of the Coq Notation facility. *)
+(* Semantics details: *)
+(* - G \isog Grp (...) : Prop expands to the statement *)
+(* forall rT (H : {group rT}), (H \homg G) = (H \homg Grp (...)) *)
+(* (with rT : finGroupType). *)
+(* - G \homg Grp (x_1 : ... x_n : (s_1 = t_1, ..., s_m = t_m)) : bool, with *)
+(* G : {set gT}, is convertible to the boolean expression *)
+(* [exists t : gT * ... gT, let: (x_1, ..., x_n) := t in *)
+(* (<[x_1]> <*> ... <*> <[x_n]>, (s_1, ... (s_m-1, s_m) ...)) *)
+(* == (G, (t_1, ... (t_m-1, t_m) ...))] *)
+(* where the tuple comparison above is convertible to the conjunction *)
+(* [&& <[x_1]> <*> ... <*> <[x_n]> == G, s_1 == t_1, ... & s_m == t_m] *)
+(* Thus G \homg Grp (...) can be easily exploited by destructing the tuple *)
+(* created case/existsP, then destructing the tuple equality with case/eqP. *)
+(* Conversely it can be proved by using apply/existsP, providing the tuple *)
+(* with a single exists (u_1, ..., u_n), then using rewrite !xpair_eqE /= *)
+(* to expose the conjunction, and optionally using an apply/and{m+1}P view *)
+(* to split it into subgoals (in that case, the rewrite is in principle *)
+(* redundant, but necessary in practice because of the poor performance of *)
+(* conversion in the Coq unifier). *)
+(******************************************************************************)
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+Unset Printing Implicit Defensive.
+
+Import GroupScope.
+
+Module Presentation.
+
+Section Presentation.
+
+Implicit Types gT rT : finGroupType.
+Implicit Type vT : finType. (* tuple value type *)
+
+Inductive term :=
+ | Cst of nat
+ | Idx
+ | Inv of term
+ | Exp of term & nat
+ | Mul of term & term
+ | Conj of term & term
+ | Comm of term & term.
+
+Fixpoint eval {gT} e t : gT :=
+ match t with
+ | Cst i => nth 1 e i
+ | Idx => 1
+ | Inv t1 => (eval e t1)^-1
+ | Exp t1 n => eval e t1 ^+ n
+ | Mul t1 t2 => eval e t1 * eval e t2
+ | Conj t1 t2 => eval e t1 ^ eval e t2
+ | Comm t1 t2 => [~ eval e t1, eval e t2]
+ end.
+
+Inductive formula := Eq2 of term & term | And of formula & formula.
+Definition Eq1 s := Eq2 s Idx.
+Definition Eq3 s1 s2 t := And (Eq2 s1 t) (Eq2 s2 t).
+
+Inductive rel_type := NoRel | Rel vT of vT & vT.
+
+Definition bool_of_rel r := if r is Rel vT v1 v2 then v1 == v2 else true.
+Local Coercion bool_of_rel : rel_type >-> bool.
+
+Definition and_rel vT (v1 v2 : vT) r :=
+ if r is Rel wT w1 w2 then Rel (v1, w1) (v2, w2) else Rel v1 v2.
+
+Fixpoint rel {gT} (e : seq gT) f r :=
+ match f with
+ | Eq2 s t => and_rel (eval e s) (eval e t) r
+ | And f1 f2 => rel e f1 (rel e f2 r)
+ end.
+
+Inductive type := Generator of term -> type | Formula of formula.
+Definition Cast p : type := p. (* syntactic scope cast *)
+Local Coercion Formula : formula >-> type.
+
+Inductive env gT := Env of {set gT} & seq gT.
+Definition env1 {gT} (x : gT : finType) := Env <[x]> [:: x].
+
+Fixpoint sat gT vT B n (s : vT -> env gT) p :=
+ match p with
+ | Formula f =>
+ [exists v, let: Env A e := s v in and_rel A B (rel (rev e) f NoRel)]
+ | Generator p' =>
+ let s' v := let: Env A e := s v.1 in Env (A <*> <[v.2]>) (v.2 :: e) in
+ sat B n.+1 s' (p' (Cst n))
+ end.
+
+Definition hom gT (B : {set gT}) p := sat B 1 env1 (p (Cst 0)).
+Definition iso gT (B : {set gT}) p :=
+ forall rT (H : {group rT}), (H \homg B) = hom H p.
+
+End Presentation.
+
+End Presentation.
+
+Import Presentation.
+
+Coercion bool_of_rel : rel_type >-> bool.
+Coercion Eq1 : term >-> formula.
+Coercion Formula : formula >-> type.
+
+(* Declare (implicitly) the argument scope tags. *)
+Notation "1" := Idx : group_presentation.
+Arguments Scope Inv [group_presentation].
+Arguments Scope Exp [group_presentation nat_scope].
+Arguments Scope Mul [group_presentation group_presentation].
+Arguments Scope Conj [group_presentation group_presentation].
+Arguments Scope Comm [group_presentation group_presentation].
+Arguments Scope Eq1 [group_presentation].
+Arguments Scope Eq2 [group_presentation group_presentation].
+Arguments Scope Eq3 [group_presentation group_presentation group_presentation].
+Arguments Scope And [group_presentation group_presentation].
+Arguments Scope Formula [group_presentation].
+Arguments Scope Cast [group_presentation].
+
+Infix "*" := Mul : group_presentation.
+Infix "^+" := Exp : group_presentation.
+Infix "^" := Conj : group_presentation.
+Notation "x ^-1" := (Inv x) : group_presentation.
+Notation "x ^- n" := (Inv (x ^+ n)) : group_presentation.
+Notation "[ ~ x1 , x2 , .. , xn ]" :=
+ (Comm .. (Comm x1 x2) .. xn) : group_presentation.
+Notation "x = y" := (Eq2 x y) : group_presentation.
+Notation "x = y = z" := (Eq3 x y z) : group_presentation.
+Notation "( r1 , r2 , .. , rn )" :=
+ (And .. (And r1 r2) .. rn) : group_presentation.
+
+(* Declare (implicitly) the argument scope tags. *)
+Notation "x : p" := (fun x => Cast p) : nt_group_presentation.
+Arguments Scope Generator [nt_group_presentation].
+Arguments Scope hom [_ group_scope nt_group_presentation].
+Arguments Scope iso [_ group_scope nt_group_presentation].
+
+Notation "x : p" := (Generator (x : p)) : group_presentation.
+
+Notation "H \homg 'Grp' p" := (hom H p)
+ (at level 70, p at level 0, format "H \homg 'Grp' p") : group_scope.
+
+Notation "H \isog 'Grp' p" := (iso H p)
+ (at level 70, p at level 0, format "H \isog 'Grp' p") : group_scope.
+
+Notation "H \homg 'Grp' ( x : p )" := (hom H (x : p))
+ (at level 70, x at level 0,
+ format "'[hv' H '/ ' \homg 'Grp' ( x : p ) ']'") : group_scope.
+
+Notation "H \isog 'Grp' ( x : p )" := (iso H (x : p))
+ (at level 70, x at level 0,
+ format "'[hv' H '/ ' \isog 'Grp' ( x : p ) ']'") : group_scope.
+
+Section PresentationTheory.
+
+Implicit Types gT rT : finGroupType.
+
+Import Presentation.
+
+Lemma isoGrp_hom gT (G : {group gT}) p : G \isog Grp p -> G \homg Grp p.
+Proof. by move <-; exact: homg_refl. Qed.
+
+Lemma isoGrpP gT (G : {group gT}) p rT (H : {group rT}) :
+ G \isog Grp p -> reflect (#|H| = #|G| /\ H \homg Grp p) (H \isog G).
+Proof.
+move=> isoGp; apply: (iffP idP) => [isoGH | [oH homHp]].
+ by rewrite (card_isog isoGH) -isoGp isog_hom.
+by rewrite isogEcard isoGp homHp /= oH.
+Qed.
+
+Lemma homGrp_trans rT gT (H : {set rT}) (G : {group gT}) p :
+ H \homg G -> G \homg Grp p -> H \homg Grp p.
+Proof.
+case/homgP=> h <-{H}; rewrite /hom; move: {p}(p _) => p.
+have evalG e t: all (mem G) e -> eval (map h e) t = h (eval e t).
+ move=> Ge; apply: (@proj2 (eval e t \in G)); elim: t => /=.
+ - move=> i; case: (leqP (size e) i) => [le_e_i | lt_i_e].
+ by rewrite !nth_default ?size_map ?morph1.
+ by rewrite (nth_map 1) // [_ \in G](allP Ge) ?mem_nth.
+ - by rewrite morph1.
+ - by move=> t [Gt ->]; rewrite groupV morphV.
+ - by move=> t [Gt ->] n; rewrite groupX ?morphX.
+ - by move=> t1 [Gt1 ->] t2 [Gt2 ->]; rewrite groupM ?morphM.
+ - by move=> t1 [Gt1 ->] t2 [Gt2 ->]; rewrite groupJ ?morphJ.
+ by move=> t1 [Gt1 ->] t2 [Gt2 ->]; rewrite groupR ?morphR.
+have and_relE xT x1 x2 r: @and_rel xT x1 x2 r = (x1 == x2) && r :> bool.
+ by case: r => //=; rewrite andbT.
+have rsatG e f: all (mem G) e -> rel e f NoRel -> rel (map h e) f NoRel.
+ move=> Ge; have: NoRel -> NoRel by []; move: NoRel {2 4}NoRel.
+ elim: f => [x1 x2 | f1 IH1 f2 IH2] r hr IHr; last by apply: IH1; exact: IH2.
+ by rewrite !and_relE !evalG //; case/andP; move/eqP->; rewrite eqxx.
+set s := env1; set vT := gT : finType in s *.
+set s' := env1; set vT' := rT : finType in s' *.
+have (v): let: Env A e := s v in
+ A \subset G -> all (mem G) e /\ exists v', s' v' = Env (h @* A) (map h e).
+- rewrite /= cycle_subG andbT => Gv; rewrite morphim_cycle //.
+ by split; last exists (h v).
+elim: p 1%N vT vT' s s' => /= [p IHp | f] n vT vT' s s' Gs.
+ apply: IHp => [[v x]] /=; case: (s v) {Gs}(Gs v) => A e /= Gs.
+ rewrite join_subG cycle_subG; case/andP=> sAG Gx; rewrite Gx.
+ have [//|-> [v' def_v']] := Gs; split=> //; exists (v', h x); rewrite def_v'.
+ by congr (Env _ _); rewrite morphimY ?cycle_subG // morphim_cycle.
+case/existsP=> v; case: (s v) {Gs}(Gs v) => /= A e Gs.
+rewrite and_relE => /andP[/eqP defA rel_f].
+have{Gs} [|Ge [v' def_v']] := Gs; first by rewrite defA.
+apply/existsP; exists v'; rewrite def_v' and_relE defA eqxx /=.
+by rewrite -map_rev rsatG ?(eq_all_r (mem_rev e)).
+Qed.
+
+Lemma eq_homGrp gT rT (G : {group gT}) (H : {group rT}) p :
+ G \isog H -> (G \homg Grp p) = (H \homg Grp p).
+Proof.
+by rewrite isogEhom => /andP[homGH homHG]; apply/idP/idP; exact: homGrp_trans.
+Qed.
+
+Lemma isoGrp_trans gT rT (G : {group gT}) (H : {group rT}) p :
+ G \isog H -> H \isog Grp p -> G \isog Grp p.
+Proof. by move=> isoGH isoHp kT K; rewrite -isoHp; exact: eq_homgr. Qed.
+
+Lemma intro_isoGrp gT (G : {group gT}) p :
+ G \homg Grp p -> (forall rT (H : {group rT}), H \homg Grp p -> H \homg G) ->
+ G \isog Grp p.
+Proof.
+move=> homGp freeG rT H.
+by apply/idP/idP=> [homHp|]; [exact: homGrp_trans homGp | exact: freeG].
+Qed.
+
+End PresentationTheory.
+