diff options
| author | Enrico Tassi | 2015-03-09 11:07:53 +0100 |
|---|---|---|
| committer | Enrico Tassi | 2015-03-09 11:24:38 +0100 |
| commit | fc84c27eac260dffd8f2fb1cb56d599f1e3486d9 (patch) | |
| tree | c16205f1637c80833a4c4598993c29fa0fd8c373 /mathcomp/fingroup/morphism.v | |
Initial commit
Diffstat (limited to 'mathcomp/fingroup/morphism.v')
| -rw-r--r-- | mathcomp/fingroup/morphism.v | 1539 |
1 files changed, 1539 insertions, 0 deletions
diff --git a/mathcomp/fingroup/morphism.v b/mathcomp/fingroup/morphism.v new file mode 100644 index 0000000..7013264 --- /dev/null +++ b/mathcomp/fingroup/morphism.v @@ -0,0 +1,1539 @@ +(* (c) Copyright Microsoft Corporation and Inria. All rights reserved. *) +Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq choice fintype finfun. +Require Import bigop finset fingroup. + +(******************************************************************************) +(* This file contains the definitions of: *) +(* *) +(* {morphism D >-> rT} == *) +(* the structure type of functions that are group morphisms mapping a *) +(* domain set D : {set aT} to a type rT; rT must have a finGroupType *) +(* structure, and D is usually a group (most of the theory expects this). *) +(* mfun == the coercion projecting {morphism D >-> rT} to aT -> rT *) +(* *) +(* Basic examples: *) +(* idm D == the identity morphism with domain D, or more precisely *) +(* the identity function, but with a canonical *) +(* {morphism G -> gT} structure. *) +(* trivm D == the trivial morphism with domain D *) +(* If f has a {morphism D >-> rT} structure *) +(* 'dom f == D *) +(* f @* A == the image of A by f, where f is defined *) +(* := f @: (D :&: A) *) +(* f @*^-1 R == the pre-image of R by f, where f is defined *) +(* := D :&: f @^-1: R *) +(* 'ker f == the kernel of f *) +(* := f @^-1: 1 *) +(* 'ker_G f == the kernel of f restricted to G *) +(* := G :&: 'ker f (this is a pure notation) *) +(* 'injm f <=> f injective on D *) +(* <-> ker f \subset 1 (this is a pure notation) *) +(* invm injf == the inverse morphism of f, with domain f @* D, when f *) +(* is injective (injf : 'injm f) *) +(* restrm f sDom == the restriction of f to a subset A of D, given *) +(* (sDom : A \subset D); restrm f sDom is transparently *) +(* identical to f; the restrmP and domP lemmas provide *) +(* opaque restrictions. *) +(* invm f infj == the inverse morphism for an injective f, with domain *) +(* f @* D, given (injf : 'injm f) *) +(* *) +(* G \isog H <=> G and H are isomorphic as groups *) +(* H \homg G <=> H is a homomorphic image of G *) +(* isom G H f <=> f maps G isomorphically to H, provided D contains G *) +(* <-> f @: G^# == H^# *) +(* *) +(* If, moreover, g : {morphism G >-> gT} with G : {group aT}, *) +(* factm sKer sDom == the (natural) factor morphism mapping f @* G to g @* G *) +(* given sDom : G \subset D, sKer : 'ker f \subset 'ker g *) +(* ifactm injf g == the (natural) factor morphism mapping f @* G to g @* G *) +(* when f is injective (injf : 'injm f); here g must *) +(* be an actual morphism structure, not its function *) +(* projection. *) +(* *) +(* If g has a {morphism G >-> aT} structure for any G : {group gT}, then *) +(* f \o g has a canonical {morphism g @*^-1 D >-> rT} structure *) +(* *) +(* Finally, for an arbitrary function f : aT -> rT *) +(* morphic D f <=> f preserves group multiplication in D, i.e., *) +(* f (x * y) = (f x) * (f y) for all x, y in D *) +(* morphm fM == a function identical to f, but with a canonical *) +(* {morphism D >-> rT} structure, given fM : morphic D f *) +(* misom D C f <=> f maps D isomorphically to C *) +(* := morphic D f && isom D C f *) +(******************************************************************************) + +Set Implicit Arguments. +Unset Strict Implicit. +Unset Printing Implicit Defensive. + +Import GroupScope. + +Reserved Notation "x \isog y" (at level 70). + +Section MorphismStructure. + +Variables aT rT : finGroupType. + +Structure morphism (D : {set aT}) : Type := Morphism { + mfun :> aT -> FinGroup.sort rT; + _ : {in D &, {morph mfun : x y / x * y}} +}. + +(* We give the most 'lightweight' possible specification to define morphisms:*) +(* local congruence with the group law of aT. We then provide the properties *) +(* for the 'textbook' notion of morphism, when the required structures are *) +(* available (e.g. its domain is a group). *) + +Definition morphism_for D of phant rT := morphism D. + +Definition clone_morphism D f := + let: Morphism _ fM := f + return {type of @Morphism D for f} -> morphism_for D (Phant rT) + in fun k => k fM. + +Variables (D A : {set aT}) (R : {set rT}) (x : aT) (y : rT) (f : aT -> rT). + +CoInductive morphim_spec : Prop := MorphimSpec z & z \in D & z \in A & y = f z. + +Lemma morphimP : reflect morphim_spec (y \in f @: (D :&: A)). +Proof. +apply: (iffP imsetP) => [] [z]; first by case/setIP; exists z. +by exists z; first apply/setIP. +Qed. + +Lemma morphpreP : reflect (x \in D /\ f x \in R) (x \in D :&: f @^-1: R). +Proof. rewrite !inE; exact: andP. Qed. + +End MorphismStructure. + +Notation "{ 'morphism' D >-> T }" := (morphism_for D (Phant T)) + (at level 0, format "{ 'morphism' D >-> T }") : group_scope. +Notation "[ 'morphism' D 'of' f ]" := + (@clone_morphism _ _ D _ (fun fM => @Morphism _ _ D f fM)) + (at level 0, format "[ 'morphism' D 'of' f ]") : form_scope. +Notation "[ 'morphism' 'of' f ]" := (clone_morphism (@Morphism _ _ _ f)) + (at level 0, format "[ 'morphism' 'of' f ]") : form_scope. + +Implicit Arguments morphimP [aT rT D A f y]. +Implicit Arguments morphpreP [aT rT D R f x]. +Prenex Implicits morphimP morphpreP. + +(* domain, image, preimage, kernel, using phantom types to infer the domain *) + +Section MorphismOps1. + +Variables (aT rT : finGroupType) (D : {set aT}) (f : {morphism D >-> rT}). + +Lemma morphM : {in D &, {morph f : x y / x * y}}. +Proof. by case f. Qed. + +Notation morPhantom := (phantom (aT -> rT)). +Definition MorPhantom := Phantom (aT -> rT). + +Definition dom of morPhantom f := D. + +Definition morphim of morPhantom f := fun A => f @: (D :&: A). + +Definition morphpre of morPhantom f := fun R : {set rT} => D :&: f @^-1: R. + +Definition ker mph := morphpre mph 1. + +End MorphismOps1. + +Arguments Scope morphim [_ _ group_scope _ _ group_scope]. +Arguments Scope morphpre [_ _ group_scope _ _ group_scope]. + +Notation "''dom' f" := (dom (MorPhantom f)) + (at level 10, f at level 8, format "''dom' f") : group_scope. + +Notation "''ker' f" := (ker (MorPhantom f)) + (at level 10, f at level 8, format "''ker' f") : group_scope. + +Notation "''ker_' H f" := (H :&: 'ker f) + (at level 10, H at level 2, f at level 8, format "''ker_' H f") + : group_scope. + +Notation "f @* A" := (morphim (MorPhantom f) A) + (at level 24, format "f @* A") : group_scope. + +Notation "f @*^-1 R" := (morphpre (MorPhantom f) R) + (at level 24, format "f @*^-1 R") : group_scope. + +Notation "''injm' f" := (pred_of_set ('ker f) \subset pred_of_set 1) + (at level 10, f at level 8, format "''injm' f") : group_scope. + +Section MorphismTheory. + +Variables aT rT : finGroupType. +Implicit Types A B : {set aT}. +Implicit Types G H : {group aT}. +Implicit Types R S : {set rT}. +Implicit Types M : {group rT}. + +(* Most properties of morphims hold only when the domain is a group. *) +Variables (D : {group aT}) (f : {morphism D >-> rT}). + +Lemma morph1 : f 1 = 1. +Proof. by apply: (mulgI (f 1)); rewrite -morphM ?mulg1. Qed. + +Lemma morph_prod I r (P : pred I) F : + (forall i, P i -> F i \in D) -> + f (\prod_(i <- r | P i) F i) = \prod_( i <- r | P i) f (F i). +Proof. +move=> D_F; elim/(big_load (fun x => x \in D)): _. +elim/big_rec2: _ => [|i _ x Pi [Dx <-]]; first by rewrite morph1. +by rewrite groupM ?morphM // D_F. +Qed. + +Lemma morphV : {in D, {morph f : x / x^-1}}. +Proof. +move=> x Dx; apply: (mulgI (f x)). +by rewrite -morphM ?groupV // !mulgV morph1. +Qed. + +Lemma morphJ : {in D &, {morph f : x y / x ^ y}}. +Proof. by move=> * /=; rewrite !morphM ?morphV // ?groupM ?groupV. Qed. + +Lemma morphX n : {in D, {morph f : x / x ^+ n}}. +Proof. +by elim: n => [|n IHn] x Dx; rewrite ?morph1 // !expgS morphM ?(groupX, IHn). +Qed. + +Lemma morphR : {in D &, {morph f : x y / [~ x, y]}}. +Proof. by move=> * /=; rewrite morphM ?(groupV, groupJ) // morphJ ?morphV. Qed. + +(* morphic image,preimage properties w.r.t. set-theoretic operations *) + +Lemma morphimE A : f @* A = f @: (D :&: A). Proof. by []. Qed. +Lemma morphpreE R : f @*^-1 R = D :&: f @^-1: R. Proof. by []. Qed. +Lemma kerE : 'ker f = f @*^-1 1. Proof. by []. Qed. + +Lemma morphimEsub A : A \subset D -> f @* A = f @: A. +Proof. by move=> sAD; rewrite /morphim (setIidPr sAD). Qed. + +Lemma morphimEdom : f @* D = f @: D. +Proof. exact: morphimEsub. Qed. + +Lemma morphimIdom A : f @* (D :&: A) = f @* A. +Proof. by rewrite /morphim setIA setIid. Qed. + +Lemma morphpreIdom R : D :&: f @*^-1 R = f @*^-1 R. +Proof. by rewrite /morphim setIA setIid. Qed. + +Lemma morphpreIim R : f @*^-1 (f @* D :&: R) = f @*^-1 R. +Proof. +apply/setP=> x; rewrite morphimEdom !inE. +by case Dx: (x \in D); rewrite // mem_imset. +Qed. + +Lemma morphimIim A : f @* D :&: f @* A = f @* A. +Proof. by apply/setIidPr; rewrite imsetS // setIid subsetIl. Qed. + +Lemma mem_morphim A x : x \in D -> x \in A -> f x \in f @* A. +Proof. by move=> Dx Ax; apply/morphimP; exists x. Qed. + +Lemma mem_morphpre R x : x \in D -> f x \in R -> x \in f @*^-1 R. +Proof. by move=> Dx Rfx; exact/morphpreP. Qed. + +Lemma morphimS A B : A \subset B -> f @* A \subset f @* B. +Proof. by move=> sAB; rewrite imsetS ?setIS. Qed. + +Lemma morphim_sub A : f @* A \subset f @* D. +Proof. by rewrite imsetS // setIid subsetIl. Qed. + +Lemma leq_morphim A : #|f @* A| <= #|A|. +Proof. +by apply: (leq_trans (leq_imset_card _ _)); rewrite subset_leq_card ?subsetIr. +Qed. + +Lemma morphpreS R S : R \subset S -> f @*^-1 R \subset f @*^-1 S. +Proof. by move=> sRS; rewrite setIS ?preimsetS. Qed. + +Lemma morphpre_sub R : f @*^-1 R \subset D. +Proof. exact: subsetIl. Qed. + +Lemma morphim_setIpre A R : f @* (A :&: f @*^-1 R) = f @* A :&: R. +Proof. +apply/setP=> fa; apply/morphimP/setIP=> [[a Da] | [/morphimP[a Da Aa ->] Rfa]]. + by rewrite !inE Da /= => /andP[Aa Rfa] ->; rewrite mem_morphim. +by exists a; rewrite // !inE Aa Da. +Qed. + +Lemma morphim0 : f @* set0 = set0. +Proof. by rewrite morphimE setI0 imset0. Qed. + +Lemma morphim_eq0 A : A \subset D -> (f @* A == set0) = (A == set0). +Proof. by rewrite imset_eq0 => /setIidPr->. Qed. + +Lemma morphim_set1 x : x \in D -> f @* [set x] = [set f x]. +Proof. by rewrite /morphim -sub1set => /setIidPr->; exact: imset_set1. Qed. + +Lemma morphim1 : f @* 1 = 1. +Proof. by rewrite morphim_set1 ?morph1. Qed. + +Lemma morphimV A : f @* A^-1 = (f @* A)^-1. +Proof. +wlog suffices: A / f @* A^-1 \subset (f @* A)^-1. + by move=> IH; apply/eqP; rewrite eqEsubset IH -invSg invgK -{1}(invgK A) IH. +apply/subsetP=> _ /morphimP[x Dx Ax' ->]; rewrite !inE in Ax' *. +by rewrite -morphV // mem_imset // inE groupV Dx. +Qed. + +Lemma morphpreV R : f @*^-1 R^-1 = (f @*^-1 R)^-1. +Proof. +apply/setP=> x; rewrite !inE groupV; case Dx: (x \in D) => //=. +by rewrite morphV. +Qed. + +Lemma morphimMl A B : A \subset D -> f @* (A * B) = f @* A * f @* B. +Proof. +move=> sAD; rewrite /morphim setIC -group_modl // (setIidPr sAD). +apply/setP=> fxy; apply/idP/idP. + case/imsetP=> _ /imset2P[x y Ax /setIP[Dy By] ->] ->{fxy}. + by rewrite morphM // (subsetP sAD, mem_imset2) // mem_imset // inE By. +case/imset2P=> _ _ /imsetP[x Ax ->] /morphimP[y Dy By ->] ->{fxy}. +by rewrite -morphM // (subsetP sAD, mem_imset) // mem_mulg // inE By. +Qed. + +Lemma morphimMr A B : B \subset D -> f @* (A * B) = f @* A * f @* B. +Proof. +move=> sBD; apply: invg_inj. +by rewrite invMg -!morphimV invMg morphimMl // -invGid invSg. +Qed. + +Lemma morphpreMl R S : + R \subset f @* D -> f @*^-1 (R * S) = f @*^-1 R * f @*^-1 S. +Proof. +move=> sRfD; apply/setP=> x; rewrite !inE. +apply/andP/imset2P=> [[Dx] | [y z]]; last first. + rewrite !inE => /andP[Dy Rfy] /andP[Dz Rfz] ->. + by rewrite ?(groupM, morphM, mem_imset2). +case/imset2P=> fy fz Rfy Rfz def_fx. +have /morphimP[y Dy _ def_fy]: fy \in f @* D := subsetP sRfD fy Rfy. +exists y (y^-1 * x); last by rewrite mulKVg. + by rewrite !inE Dy -def_fy. +by rewrite !inE groupM ?(morphM, morphV, groupV) // def_fx -def_fy mulKg. +Qed. + +Lemma morphimJ A x : x \in D -> f @* (A :^ x) = f @* A :^ f x. +Proof. +move=> Dx; rewrite !conjsgE morphimMl ?(morphimMr, sub1set, groupV) //. +by rewrite !(morphim_set1, groupV, morphV). +Qed. + +Lemma morphpreJ R x : x \in D -> f @*^-1 (R :^ f x) = f @*^-1 R :^ x. +Proof. +move=> Dx; apply/setP=> y; rewrite conjIg !inE conjGid // !mem_conjg inE. +by case Dy: (y \in D); rewrite // morphJ ?(morphV, groupV). +Qed. + +Lemma morphim_class x A : + x \in D -> A \subset D -> f @* (x ^: A) = f x ^: f @* A. +Proof. +move=> Dx sAD; rewrite !morphimEsub ?class_subG // /class -!imset_comp. +by apply: eq_in_imset => y Ay /=; rewrite morphJ // (subsetP sAD). +Qed. + +Lemma classes_morphim A : + A \subset D -> classes (f @* A) = [set f @* xA | xA in classes A]. +Proof. +move=> sAD; rewrite morphimEsub // /classes -!imset_comp. +apply: eq_in_imset => x /(subsetP sAD) Dx /=. +by rewrite morphim_class ?morphimEsub. +Qed. + +Lemma morphimT : f @* setT = f @* D. +Proof. by rewrite -morphimIdom setIT. Qed. + +Lemma morphimU A B : f @* (A :|: B) = f @* A :|: f @* B. +Proof. by rewrite -imsetU -setIUr. Qed. + +Lemma morphimI A B : f @* (A :&: B) \subset f @* A :&: f @* B. +Proof. by rewrite subsetI // ?morphimS ?(subsetIl, subsetIr). Qed. + +Lemma morphpre0 : f @*^-1 set0 = set0. +Proof. by rewrite morphpreE preimset0 setI0. Qed. + +Lemma morphpreT : f @*^-1 setT = D. +Proof. by rewrite morphpreE preimsetT setIT. Qed. + +Lemma morphpreU R S : f @*^-1 (R :|: S) = f @*^-1 R :|: f @*^-1 S. +Proof. by rewrite -setIUr -preimsetU. Qed. + +Lemma morphpreI R S : f @*^-1 (R :&: S) = f @*^-1 R :&: f @*^-1 S. +Proof. by rewrite -setIIr -preimsetI. Qed. + +Lemma morphpreD R S : f @*^-1 (R :\: S) = f @*^-1 R :\: f @*^-1 S. +Proof. by apply/setP=> x; rewrite !inE; case: (x \in D). Qed. + +(* kernel, domain properties *) + +Lemma kerP x : x \in D -> reflect (f x = 1) (x \in 'ker f). +Proof. move=> Dx; rewrite 2!inE Dx; exact: set1P. Qed. + +Lemma dom_ker : {subset 'ker f <= D}. +Proof. by move=> x /morphpreP[]. Qed. + +Lemma mker x : x \in 'ker f -> f x = 1. +Proof. by move=> Kx; apply/kerP=> //; exact: dom_ker. Qed. + +Lemma mkerl x y : x \in 'ker f -> y \in D -> f (x * y) = f y. +Proof. by move=> Kx Dy; rewrite morphM // ?(dom_ker, mker Kx, mul1g). Qed. + +Lemma mkerr x y : x \in D -> y \in 'ker f -> f (x * y) = f x. +Proof. by move=> Dx Ky; rewrite morphM // ?(dom_ker, mker Ky, mulg1). Qed. + +Lemma rcoset_kerP x y : + x \in D -> y \in D -> reflect (f x = f y) (x \in 'ker f :* y). +Proof. +move=> Dx Dy; rewrite mem_rcoset !inE groupM ?morphM ?groupV //=. +rewrite morphV // -eq_mulgV1; exact: eqP. +Qed. + +Lemma ker_rcoset x y : + x \in D -> y \in D -> f x = f y -> exists2 z, z \in 'ker f & x = z * y. +Proof. move=> Dx Dy eqfxy; apply/rcosetP; exact/rcoset_kerP. Qed. + +Lemma ker_norm : D \subset 'N('ker f). +Proof. +apply/subsetP=> x Dx; rewrite inE; apply/subsetP=> _ /imsetP[y Ky ->]. +by rewrite !inE groupJ ?morphJ // ?dom_ker //= mker ?conj1g. +Qed. + +Lemma ker_normal : 'ker f <| D. +Proof. by rewrite /(_ <| D) subsetIl ker_norm. Qed. + +Lemma morphimGI G A : 'ker f \subset G -> f @* (G :&: A) = f @* G :&: f @* A. +Proof. +move=> sKG; apply/eqP; rewrite eqEsubset morphimI setIC. +apply/subsetP=> _ /setIP[/morphimP[x Dx Ax ->] /morphimP[z Dz Gz]]. +case/ker_rcoset=> {Dz}// y Ky def_x. +have{z Gz y Ky def_x} Gx: x \in G by rewrite def_x groupMl // (subsetP sKG). +by rewrite mem_imset ?inE // Dx Gx Ax. +Qed. + +Lemma morphimIG A G : 'ker f \subset G -> f @* (A :&: G) = f @* A :&: f @* G. +Proof. by move=> sKG; rewrite setIC morphimGI // setIC. Qed. + +Lemma morphimD A B : f @* A :\: f @* B \subset f @* (A :\: B). +Proof. +rewrite subDset -morphimU morphimS //. +by rewrite setDE setUIr setUCr setIT subsetUr. +Qed. + +Lemma morphimDG A G : 'ker f \subset G -> f @* (A :\: G) = f @* A :\: f @* G. +Proof. +move=> sKG; apply/eqP; rewrite eqEsubset morphimD andbT !setDE subsetI. +rewrite morphimS ?subsetIl // -[~: f @* G]setU0 -subDset setDE setCK. +by rewrite -morphimIG //= setIAC -setIA setICr setI0 morphim0. +Qed. + +Lemma morphimD1 A : (f @* A)^# \subset f @* A^#. +Proof. by rewrite -!set1gE -morphim1 morphimD. Qed. + +(* group structure preservation *) + +Lemma morphpre_groupset M : group_set (f @*^-1 M). +Proof. +apply/group_setP; split=> [|x y]; rewrite !inE ?(morph1, group1) //. +by case/andP=> Dx Mfx /andP[Dy Mfy]; rewrite morphM ?groupM. +Qed. + +Lemma morphim_groupset G : group_set (f @* G). +Proof. +apply/group_setP; split=> [|_ _ /morphimP[x Dx Gx ->] /morphimP[y Dy Gy ->]]. + by rewrite -morph1 mem_imset ?group1. +by rewrite -morphM ?mem_imset ?inE ?groupM. +Qed. + +Canonical morphpre_group fPh M := + @group _ (morphpre fPh M) (morphpre_groupset M). +Canonical morphim_group fPh G := @group _ (morphim fPh G) (morphim_groupset G). +Canonical ker_group fPh : {group aT} := Eval hnf in [group of ker fPh]. + +Lemma morph_dom_groupset : group_set (f @: D). +Proof. by rewrite -morphimEdom groupP. Qed. + +Canonical morph_dom_group := group morph_dom_groupset. + +Lemma morphpreMr R S : + S \subset f @* D -> f @*^-1 (R * S) = f @*^-1 R * f @*^-1 S. +Proof. +move=> sSfD; apply: invg_inj. +by rewrite invMg -!morphpreV invMg morphpreMl // -invSg invgK invGid. +Qed. + +Lemma morphimK A : A \subset D -> f @*^-1 (f @* A) = 'ker f * A. +Proof. +move=> sAD; apply/setP=> x; rewrite !inE. +apply/idP/idP=> [/andP[Dx /morphimP[y Dy Ay eqxy]] | /imset2P[z y Kz Ay ->{x}]]. + rewrite -(mulgKV y x) mem_mulg // !inE !(groupM, morphM, groupV) //. + by rewrite morphV //= eqxy mulgV. +have [Dy Dz]: y \in D /\ z \in D by rewrite (subsetP sAD) // dom_ker. +by rewrite groupM // morphM // mker // mul1g mem_imset // inE Dy. +Qed. + +Lemma morphimGK G : 'ker f \subset G -> G \subset D -> f @*^-1 (f @* G) = G. +Proof. by move=> sKG sGD; rewrite morphimK // mulSGid. Qed. + +Lemma morphpre_set1 x : x \in D -> f @*^-1 [set f x] = 'ker f :* x. +Proof. by move=> Dx; rewrite -morphim_set1 // morphimK ?sub1set. Qed. + +Lemma morphpreK R : R \subset f @* D -> f @* (f @*^-1 R) = R. +Proof. +move=> sRfD; apply/setP=> y; apply/morphimP/idP=> [[x _] | Ry]. + by rewrite !inE; case/andP=> _ Rfx ->. +have /morphimP[x Dx _ defy]: y \in f @* D := subsetP sRfD y Ry. +by exists x; rewrite // !inE Dx -defy. +Qed. + +Lemma morphim_ker : f @* 'ker f = 1. +Proof. by rewrite morphpreK ?sub1G. Qed. + +Lemma ker_sub_pre M : 'ker f \subset f @*^-1 M. +Proof. by rewrite morphpreS ?sub1G. Qed. + +Lemma ker_normal_pre M : 'ker f <| f @*^-1 M. +Proof. by rewrite /normal ker_sub_pre subIset ?ker_norm. Qed. + +Lemma morphpreSK R S : + R \subset f @* D -> (f @*^-1 R \subset f @*^-1 S) = (R \subset S). +Proof. +move=> sRfD; apply/idP/idP=> [sf'RS|]; last exact: morphpreS. +suffices: R \subset f @* D :&: S by rewrite subsetI sRfD. +rewrite -(morphpreK sRfD) -[_ :&: S]morphpreK (morphimS, subsetIl) //. +by rewrite morphpreI morphimGK ?subsetIl // setIA setIid. +Qed. + +Lemma sub_morphim_pre A R : + A \subset D -> (f @* A \subset R) = (A \subset f @*^-1 R). +Proof. +move=> sAD; rewrite -morphpreSK (morphimS, morphimK) //. +apply/idP/idP; first by apply: subset_trans; exact: mulG_subr. +by move/(mulgS ('ker f)); rewrite -morphpreMl ?(sub1G, mul1g). +Qed. + +Lemma morphpre_proper R S : + R \subset f @* D -> S \subset f @* D -> + (f @*^-1 R \proper f @*^-1 S) = (R \proper S). +Proof. by move=> dQ dR; rewrite /proper !morphpreSK. Qed. + +Lemma sub_morphpre_im R G : + 'ker f \subset G -> G \subset D -> R \subset f @* D -> + (f @*^-1 R \subset G) = (R \subset f @* G). +Proof. by symmetry; rewrite -morphpreSK ?morphimGK. Qed. + +Lemma ker_trivg_morphim A : + (A \subset 'ker f) = (A \subset D) && (f @* A \subset [1]). +Proof. +case sAD: (A \subset D); first by rewrite sub_morphim_pre. +by rewrite subsetI sAD. +Qed. + +Lemma morphimSK A B : + A \subset D -> (f @* A \subset f @* B) = (A \subset 'ker f * B). +Proof. +move=> sAD; transitivity (A \subset 'ker f * (D :&: B)). + by rewrite -morphimK ?subsetIl // -sub_morphim_pre // /morphim setIA setIid. +by rewrite setIC group_modl (subsetIl, subsetI) // andbC sAD. +Qed. + +Lemma morphimSGK A G : + A \subset D -> 'ker f \subset G -> (f @* A \subset f @* G) = (A \subset G). +Proof. by move=> sGD skfK; rewrite morphimSK // mulSGid. Qed. + +Lemma ltn_morphim A : [1] \proper 'ker_A f -> #|f @* A| < #|A|. +Proof. +case/properP; rewrite sub1set => /setIP[A1 _] [x /setIP[Ax kx] x1]. +rewrite (cardsD1 1 A) A1 ltnS -{1}(setD1K A1) morphimU morphim1. +rewrite (setUidPr _) ?sub1set; last first. + by rewrite -(mker kx) mem_morphim ?(dom_ker kx) // inE x1. +by rewrite (leq_trans (leq_imset_card _ _)) ?subset_leq_card ?subsetIr. +Qed. + +(* injectivity of image and preimage *) + +Lemma morphpre_inj : + {in [pred R : {set rT} | R \subset f @* D] &, injective (fun R => f @*^-1 R)}. +Proof. exact: can_in_inj morphpreK. Qed. + +Lemma morphim_injG : + {in [pred G : {group aT} | 'ker f \subset G & G \subset D] &, + injective (fun G => f @* G)}. +Proof. +move=> G H /andP[sKG sGD] /andP[sKH sHD] eqfGH. +by apply: val_inj; rewrite /= -(morphimGK sKG sGD) eqfGH morphimGK. +Qed. + +Lemma morphim_inj G H : + ('ker f \subset G) && (G \subset D) -> + ('ker f \subset H) && (H \subset D) -> + f @* G = f @* H -> G :=: H. +Proof. by move=> nsGf nsHf /morphim_injG->. Qed. + +(* commutation with generated groups and cycles *) + +Lemma morphim_gen A : A \subset D -> f @* <<A>> = <<f @* A>>. +Proof. +move=> sAD; apply/eqP. +rewrite eqEsubset andbC gen_subG morphimS; last exact: subset_gen. +by rewrite sub_morphim_pre gen_subG // -sub_morphim_pre // subset_gen. +Qed. + +Lemma morphim_cycle x : x \in D -> f @* <[x]> = <[f x]>. +Proof. by move=> Dx; rewrite morphim_gen (sub1set, morphim_set1). Qed. + +Lemma morphimY A B : + A \subset D -> B \subset D -> f @* (A <*> B) = f @* A <*> f @* B. +Proof. by move=> sAD sBD; rewrite morphim_gen ?morphimU // subUset sAD. Qed. + +Lemma morphpre_gen R : + 1 \in R -> R \subset f @* D -> f @*^-1 <<R>> = <<f @*^-1 R>>. +Proof. +move=> R1 sRfD; apply/eqP. +rewrite eqEsubset andbC gen_subG morphpreS; last exact: subset_gen. +rewrite -{1}(morphpreK sRfD) -morphim_gen ?subsetIl // morphimGK //=. + by rewrite sub_gen // setIS // preimsetS ?sub1set. +by rewrite gen_subG subsetIl. +Qed. + +(* commutator, normaliser, normal, center properties*) + +Lemma morphimR A B : + A \subset D -> B \subset D -> f @* [~: A, B] = [~: f @* A, f @* B]. +Proof. +move/subsetP=> sAD /subsetP sBD. +rewrite morphim_gen; last first; last congr <<_>>. + by apply/subsetP=> _ /imset2P[x y Ax By ->]; rewrite groupR; auto. +apply/setP=> fz; apply/morphimP/imset2P=> [[z _] | [fx fy]]. + case/imset2P=> x y Ax By -> -> {z fz}. + have Dx := sAD x Ax; have Dy := sBD y By. + by exists (f x) (f y); rewrite ?(mem_imset, morphR) // ?(inE, Dx, Dy). +case/morphimP=> x Dx Ax ->{fx}; case/morphimP=> y Dy By ->{fy} -> {fz}. +by exists [~ x, y]; rewrite ?(inE, morphR, groupR, mem_imset2). +Qed. + +Lemma morphim_norm A : f @* 'N(A) \subset 'N(f @* A). +Proof. +apply/subsetP=> fx; case/morphimP=> x Dx Nx -> {fx}. +by rewrite inE -morphimJ ?(normP Nx). +Qed. + +Lemma morphim_norms A B : A \subset 'N(B) -> f @* A \subset 'N(f @* B). +Proof. +by move=> nBA; apply: subset_trans (morphim_norm B); exact: morphimS. +Qed. + +Lemma morphim_subnorm A B : f @* 'N_A(B) \subset 'N_(f @* A)(f @* B). +Proof. exact: subset_trans (morphimI A _) (setIS _ (morphim_norm B)). Qed. + +Lemma morphim_normal A B : A <| B -> f @* A <| f @* B. +Proof. by case/andP=> sAB nAB; rewrite /(_ <| _) morphimS // morphim_norms. Qed. + +Lemma morphim_cent1 x : x \in D -> f @* 'C[x] \subset 'C[f x]. +Proof. by move=> Dx; rewrite -(morphim_set1 Dx) morphim_norm. Qed. + +Lemma morphim_cent1s A x : x \in D -> A \subset 'C[x] -> f @* A \subset 'C[f x]. +Proof. +by move=> Dx cAx; apply: subset_trans (morphim_cent1 Dx); exact: morphimS. +Qed. + +Lemma morphim_subcent1 A x : x \in D -> f @* 'C_A[x] \subset 'C_(f @* A)[f x]. +Proof. by move=> Dx; rewrite -(morphim_set1 Dx) morphim_subnorm. Qed. + +Lemma morphim_cent A : f @* 'C(A) \subset 'C(f @* A). +Proof. +apply/bigcapsP=> fx; case/morphimP=> x Dx Ax ->{fx}. +by apply: subset_trans (morphim_cent1 Dx); apply: morphimS; exact: bigcap_inf. +Qed. + +Lemma morphim_cents A B : A \subset 'C(B) -> f @* A \subset 'C(f @* B). +Proof. +by move=> cBA; apply: subset_trans (morphim_cent B); exact: morphimS. +Qed. + +Lemma morphim_subcent A B : f @* 'C_A(B) \subset 'C_(f @* A)(f @* B). +Proof. exact: subset_trans (morphimI A _) (setIS _ (morphim_cent B)). Qed. + +Lemma morphim_abelian A : abelian A -> abelian (f @* A). +Proof. exact: morphim_cents. Qed. + +Lemma morphpre_norm R : f @*^-1 'N(R) \subset 'N(f @*^-1 R). +Proof. +apply/subsetP=> x; rewrite !inE => /andP[Dx Nfx]. +by rewrite -morphpreJ ?morphpreS. +Qed. + +Lemma morphpre_norms R S : R \subset 'N(S) -> f @*^-1 R \subset 'N(f @*^-1 S). +Proof. +by move=> nSR; apply: subset_trans (morphpre_norm S); exact: morphpreS. +Qed. + +Lemma morphpre_normal R S : + R \subset f @* D -> S \subset f @* D -> (f @*^-1 R <| f @*^-1 S) = (R <| S). +Proof. +move=> sRfD sSfD; apply/idP/andP=> [|[sRS nSR]]. + by move/morphim_normal; rewrite !morphpreK //; case/andP. +by rewrite /(_ <| _) (subset_trans _ (morphpre_norm _)) morphpreS. +Qed. + +Lemma morphpre_subnorm R S : f @*^-1 'N_R(S) \subset 'N_(f @*^-1 R)(f @*^-1 S). +Proof. by rewrite morphpreI setIS ?morphpre_norm. Qed. + +Lemma morphim_normG G : + 'ker f \subset G -> G \subset D -> f @* 'N(G) = 'N_(f @* D)(f @* G). +Proof. +move=> sKG sGD; apply/eqP; rewrite eqEsubset -{1}morphimIdom morphim_subnorm. +rewrite -(morphpreK (subsetIl _ _)) morphimS //= morphpreI subIset // orbC. +by rewrite -{2}(morphimGK sKG sGD) morphpre_norm. +Qed. + +Lemma morphim_subnormG A G : + 'ker f \subset G -> G \subset D -> f @* 'N_A(G) = 'N_(f @* A)(f @* G). +Proof. +move=> sKB sBD; rewrite morphimIG ?normsG // morphim_normG //. +by rewrite setICA setIA morphimIim. +Qed. + +Lemma morphpre_cent1 x : x \in D -> 'C_D[x] \subset f @*^-1 'C[f x]. +Proof. +move=> Dx; rewrite -sub_morphim_pre ?subsetIl //. +by apply: subset_trans (morphim_cent1 Dx); rewrite morphimS ?subsetIr. +Qed. + +Lemma morphpre_cent1s R x : + x \in D -> R \subset f @* D -> f @*^-1 R \subset 'C[x] -> R \subset 'C[f x]. +Proof. by move=> Dx sRfD; move/(morphim_cent1s Dx); rewrite morphpreK. Qed. + +Lemma morphpre_subcent1 R x : + x \in D -> 'C_(f @*^-1 R)[x] \subset f @*^-1 'C_R[f x]. +Proof. +move=> Dx; rewrite -morphpreIdom -setIA setICA morphpreI setIS //. +exact: morphpre_cent1. +Qed. + +Lemma morphpre_cent A : 'C_D(A) \subset f @*^-1 'C(f @* A). +Proof. +rewrite -sub_morphim_pre ?subsetIl // morphimGI ?(subsetIl, subIset) // orbC. +by rewrite (subset_trans (morphim_cent _)). +Qed. + +Lemma morphpre_cents A R : + R \subset f @* D -> f @*^-1 R \subset 'C(A) -> R \subset 'C(f @* A). +Proof. by move=> sRfD; move/morphim_cents; rewrite morphpreK. Qed. + +Lemma morphpre_subcent R A : 'C_(f @*^-1 R)(A) \subset f @*^-1 'C_R(f @* A). +Proof. +by rewrite -morphpreIdom -setIA setICA morphpreI setIS //; exact: morphpre_cent. +Qed. + +(* local injectivity properties *) + +Lemma injmP : reflect {in D &, injective f} ('injm f). +Proof. +apply: (iffP subsetP) => [injf x y Dx Dy | injf x /= Kx]. + by case/ker_rcoset=> // z /injf/set1P->; rewrite mul1g. +have Dx := dom_ker Kx; apply/set1P/injf => //. +by apply/rcoset_kerP; rewrite // mulg1. +Qed. + +Lemma card_im_injm : (#|f @* D| == #|D|) = 'injm f. +Proof. by rewrite morphimEdom (sameP imset_injP injmP). Qed. + +Section Injective. + +Hypothesis injf : 'injm f. + +Lemma ker_injm : 'ker f = 1. +Proof. exact/trivgP. Qed. + +Lemma injmK A : A \subset D -> f @*^-1 (f @* A) = A. +Proof. by move=> sAD; rewrite morphimK // ker_injm // mul1g. Qed. + +Lemma injm_morphim_inj A B : + A \subset D -> B \subset D -> f @* A = f @* B -> A = B. +Proof. by move=> sAD sBD eqAB; rewrite -(injmK sAD) eqAB injmK. Qed. + +Lemma card_injm A : A \subset D -> #|f @* A| = #|A|. +Proof. +move=> sAD; rewrite morphimEsub // card_in_imset //. +exact: (sub_in2 (subsetP sAD) (injmP injf)). +Qed. + +Lemma order_injm x : x \in D -> #[f x] = #[x]. +Proof. +by move=> Dx; rewrite orderE -morphim_cycle // card_injm ?cycle_subG. +Qed. + +Lemma injm1 x : x \in D -> f x = 1 -> x = 1. +Proof. by move=> Dx; move/(kerP Dx); rewrite ker_injm; move/set1P. Qed. + +Lemma morph_injm_eq1 x : x \in D -> (f x == 1) = (x == 1). +Proof. by move=> Dx; rewrite -morph1 (inj_in_eq (injmP injf)) ?group1. Qed. + +Lemma injmSK A B : + A \subset D -> (f @* A \subset f @* B) = (A \subset B). +Proof. by move=> sAD; rewrite morphimSK // ker_injm mul1g. Qed. + +Lemma sub_morphpre_injm R A : + A \subset D -> R \subset f @* D -> + (f @*^-1 R \subset A) = (R \subset f @* A). +Proof. by move=> sAD sRfD; rewrite -morphpreSK ?injmK. Qed. + +Lemma injm_eq A B : A \subset D -> B \subset D -> (f @* A == f @* B) = (A == B). +Proof. by move=> sAD sBD; rewrite !eqEsubset !injmSK. Qed. + +Lemma morphim_injm_eq1 A : A \subset D -> (f @* A == 1) = (A == 1). +Proof. by move=> sAD; rewrite -morphim1 injm_eq ?sub1G. Qed. + +Lemma injmI A B : f @* (A :&: B) = f @* A :&: f @* B. +Proof. +rewrite -morphimIdom setIIr -4!(injmK (subsetIl D _), =^~ morphimIdom). +by rewrite -morphpreI morphpreK // subIset ?morphim_sub. +Qed. + +Lemma injmD1 A : f @* A^# = (f @* A)^#. +Proof. by have:= morphimDG A injf; rewrite morphim1. Qed. + +Lemma nclasses_injm A : A \subset D -> #|classes (f @* A)| = #|classes A|. +Proof. +move=> sAD; rewrite classes_morphim // card_in_imset //. +move=> _ _ /imsetP[x Ax ->] /imsetP[y Ay ->]. +by apply: injm_morphim_inj; rewrite // class_subG ?(subsetP sAD). +Qed. + +Lemma injm_norm A : A \subset D -> f @* 'N(A) = 'N_(f @* D)(f @* A). +Proof. +move=> sAD; apply/eqP; rewrite -morphimIdom eqEsubset morphim_subnorm. +rewrite -sub_morphpre_injm ?subsetIl // morphpreI injmK // setIS //. +by rewrite -{2}(injmK sAD) morphpre_norm. +Qed. + +Lemma injm_norms A B : + A \subset D -> B \subset D -> (f @* A \subset 'N(f @* B)) = (A \subset 'N(B)). +Proof. by move=> sAD sBD; rewrite -injmSK // injm_norm // subsetI morphimS. Qed. + +Lemma injm_normal A B : + A \subset D -> B \subset D -> (f @* A <| f @* B) = (A <| B). +Proof. by move=> sAD sBD; rewrite /normal injmSK ?injm_norms. Qed. + +Lemma injm_subnorm A B : B \subset D -> f @* 'N_A(B) = 'N_(f @* A)(f @* B). +Proof. by move=> sBD; rewrite injmI injm_norm // setICA setIA morphimIim. Qed. + +Lemma injm_cent1 x : x \in D -> f @* 'C[x] = 'C_(f @* D)[f x]. +Proof. by move=> Dx; rewrite injm_norm ?morphim_set1 ?sub1set. Qed. + +Lemma injm_subcent1 A x : x \in D -> f @* 'C_A[x] = 'C_(f @* A)[f x]. +Proof. by move=> Dx; rewrite injm_subnorm ?morphim_set1 ?sub1set. Qed. + +Lemma injm_cent A : A \subset D -> f @* 'C(A) = 'C_(f @* D)(f @* A). +Proof. +move=> sAD; apply/eqP; rewrite -morphimIdom eqEsubset morphim_subcent. +apply/subsetP=> fx; case/setIP; case/morphimP=> x Dx _ ->{fx} cAfx. +rewrite mem_morphim // inE Dx -sub1set centsC cent_set1 -injmSK //. +by rewrite injm_cent1 // subsetI morphimS // -cent_set1 centsC sub1set. +Qed. + +Lemma injm_cents A B : + A \subset D -> B \subset D -> (f @* A \subset 'C(f @* B)) = (A \subset 'C(B)). +Proof. by move=> sAD sBD; rewrite -injmSK // injm_cent // subsetI morphimS. Qed. + +Lemma injm_subcent A B : B \subset D -> f @* 'C_A(B) = 'C_(f @* A)(f @* B). +Proof. by move=> sBD; rewrite injmI injm_cent // setICA setIA morphimIim. Qed. + +Lemma injm_abelian A : A \subset D -> abelian (f @* A) = abelian A. +Proof. +by move=> sAD; rewrite /abelian -subsetIidl -injm_subcent // injmSK ?subsetIidl. +Qed. + +End Injective. + +Lemma eq_morphim (g : {morphism D >-> rT}): + {in D, f =1 g} -> forall A, f @* A = g @* A. +Proof. +by move=> efg A; apply: eq_in_imset; apply: sub_in1 efg => x /setIP[]. +Qed. + +Lemma eq_in_morphim B A (g : {morphism B >-> rT}) : + D :&: A = B :&: A -> {in A, f =1 g} -> f @* A = g @* A. +Proof. +move=> eqDBA eqAfg; rewrite /morphim /= eqDBA. +by apply: eq_in_imset => x /setIP[_]/eqAfg. +Qed. + +End MorphismTheory. + +Notation "''ker' f" := (ker_group (MorPhantom f)) : Group_scope. +Notation "''ker_' G f" := (G :&: 'ker f)%G : Group_scope. +Notation "f @* G" := (morphim_group (MorPhantom f) G) : Group_scope. +Notation "f @*^-1 M" := (morphpre_group (MorPhantom f) M) : Group_scope. +Notation "f @: D" := (morph_dom_group f D) : Group_scope. + +Implicit Arguments injmP [aT rT D f]. + +Section IdentityMorphism. + +Variable gT : finGroupType. +Implicit Types A B : {set gT}. +Implicit Type G : {group gT}. + +Definition idm of {set gT} := fun x : gT => x : FinGroup.sort gT. + +Lemma idm_morphM A : {in A & , {morph idm A : x y / x * y}}. +Proof. by []. Qed. + +Canonical idm_morphism A := Morphism (@idm_morphM A). + +Lemma injm_idm G : 'injm (idm G). +Proof. by apply/injmP=> x y _ _. Qed. + +Lemma ker_idm G : 'ker (idm G) = 1. +Proof. by apply/trivgP; exact: injm_idm. Qed. + +Lemma morphim_idm A B : B \subset A -> idm A @* B = B. +Proof. +rewrite /morphim /= /idm => /setIidPr->. +by apply/setP=> x; apply/imsetP/idP=> [[y By ->]|Bx]; last exists x. +Qed. + +Lemma morphpre_idm A B : idm A @*^-1 B = A :&: B. +Proof. by apply/setP=> x; rewrite !inE. Qed. + +Lemma im_idm A : idm A @* A = A. +Proof. exact: morphim_idm. Qed. + +End IdentityMorphism. + +Arguments Scope idm [_ group_scope group_scope]. +Prenex Implicits idm. + +Section RestrictedMorphism. + +Variables aT rT : finGroupType. +Variables A D : {set aT}. +Implicit Type B : {set aT}. +Implicit Type R : {set rT}. + +Definition restrm of A \subset D := @id (aT -> FinGroup.sort rT). + +Section Props. + +Hypothesis sAD : A \subset D. +Variable f : {morphism D >-> rT}. +Local Notation fA := (restrm sAD (mfun f)). + +Canonical restrm_morphism := + @Morphism aT rT A fA (sub_in2 (subsetP sAD) (morphM f)). + +Lemma morphim_restrm B : fA @* B = f @* (A :&: B). +Proof. by rewrite {2}/morphim setIA (setIidPr sAD). Qed. + +Lemma restrmEsub B : B \subset A -> fA @* B = f @* B. +Proof. by rewrite morphim_restrm => /setIidPr->. Qed. + +Lemma im_restrm : fA @* A = f @* A. +Proof. exact: restrmEsub. Qed. + +Lemma morphpre_restrm R : fA @*^-1 R = A :&: f @*^-1 R. +Proof. by rewrite setIA (setIidPl sAD). Qed. + +Lemma ker_restrm : 'ker fA = 'ker_A f. +Proof. exact: morphpre_restrm. Qed. + +Lemma injm_restrm : 'injm f -> 'injm fA. +Proof. by apply: subset_trans; rewrite ker_restrm subsetIr. Qed. + +End Props. + +Lemma restrmP (f : {morphism D >-> rT}) : A \subset 'dom f -> + {g : {morphism A >-> rT} | [/\ g = f :> (aT -> rT), 'ker g = 'ker_A f, + forall R, g @*^-1 R = A :&: f @*^-1 R + & forall B, B \subset A -> g @* B = f @* B]}. +Proof. +move=> sAD; exists (restrm_morphism sAD f). +split=> // [|R|B sBA]; first 1 [exact: ker_restrm | exact: morphpre_restrm]. +by rewrite morphim_restrm (setIidPr sBA). +Qed. + +Lemma domP (f : {morphism D >-> rT}) : 'dom f = A -> + {g : {morphism A >-> rT} | [/\ g = f :> (aT -> rT), 'ker g = 'ker f, + forall R, g @*^-1 R = f @*^-1 R + & forall B, g @* B = f @* B]}. +Proof. by move <-; exists f. Qed. + +End RestrictedMorphism. + +Arguments Scope restrm [_ _ group_scope group_scope _ group_scope]. +Prenex Implicits restrm. +Implicit Arguments restrmP [aT rT D A]. +Implicit Arguments domP [aT rT D A]. + +Section TrivMorphism. + +Variables aT rT : finGroupType. + +Definition trivm of {set aT} & aT := 1 : FinGroup.sort rT. + +Lemma trivm_morphM (A : {set aT}) : {in A &, {morph trivm A : x y / x * y}}. +Proof. by move=> x y /=; rewrite mulg1. Qed. + +Canonical triv_morph A := Morphism (@trivm_morphM A). + +Lemma morphim_trivm (G H : {group aT}) : trivm G @* H = 1. +Proof. +apply/setP=> /= y; rewrite inE; apply/idP/eqP=> [|->]; first by case/morphimP. +by apply/morphimP; exists (1 : aT); rewrite /= ?group1. +Qed. + +Lemma ker_trivm (G : {group aT}) : 'ker (trivm G) = G. +Proof. by apply/setIidPl/subsetP=> x _; rewrite !inE /=. Qed. + +End TrivMorphism. + +Arguments Scope trivm [_ _ group_scope group_scope]. +Implicit Arguments trivm [[aT] [rT]]. + +(* The composition of two morphisms is a Canonical morphism instance. *) +Section MorphismComposition. + +Variables gT hT rT : finGroupType. +Variables (G : {group gT}) (H : {group hT}). + +Variable f : {morphism G >-> hT}. +Variable g : {morphism H >-> rT}. + +Notation Local gof := (mfun g \o mfun f). + +Lemma comp_morphM : {in f @*^-1 H &, {morph gof: x y / x * y}}. +Proof. +by move=> x y; rewrite /= !inE => /andP[? ?] /andP[? ?]; rewrite !morphM. +Qed. + +Canonical comp_morphism := Morphism comp_morphM. + +Lemma ker_comp : 'ker gof = f @*^-1 'ker g. +Proof. by apply/setP=> x; rewrite !inE andbA. Qed. + +Lemma injm_comp : 'injm f -> 'injm g -> 'injm gof. +Proof. by move=> injf; rewrite ker_comp; move/trivgP=> ->. Qed. + +Lemma morphim_comp (A : {set gT}) : gof @* A = g @* (f @* A). +Proof. +apply/setP=> z; apply/morphimP/morphimP=> [[x]|[y Hy fAy ->{z}]]. + rewrite !inE => /andP[Gx Hfx]; exists (f x) => //. + by apply/morphimP; exists x. +by case/morphimP: fAy Hy => x Gx Ax ->{y} Hfx; exists x; rewrite ?inE ?Gx. +Qed. + +Lemma morphpre_comp (C : {set rT}) : gof @*^-1 C = f @*^-1 (g @*^-1 C). +Proof. by apply/setP=> z; rewrite !inE andbA. Qed. + +End MorphismComposition. + +(* The factor morphism *) +Section FactorMorphism. + +Variables aT qT rT : finGroupType. + +Variables G H : {group aT}. +Variable f : {morphism G >-> rT}. +Variable q : {morphism H >-> qT}. + +Definition factm of 'ker q \subset 'ker f & G \subset H := + fun x => f (repr (q @*^-1 [set x])). + +Hypothesis sKqKf : 'ker q \subset 'ker f. +Hypothesis sGH : G \subset H. + +Notation ff := (factm sKqKf sGH). + +Lemma factmE x : x \in G -> ff (q x) = f x. +Proof. +rewrite /ff => Gx; have Hx := subsetP sGH x Gx. +have /mem_repr: x \in q @*^-1 [set q x] by rewrite !inE Hx /=. +case/morphpreP; move: (repr _) => y Hy /set1P. +by case/ker_rcoset=> // z Kz ->; rewrite mkerl ?(subsetP sKqKf). +Qed. + +Lemma factm_morphM : {in q @* G &, {morph ff : x y / x * y}}. +Proof. +move=> _ _ /morphimP[x Hx Gx ->] /morphimP[y Hy Gy ->]. +by rewrite -morphM ?factmE ?groupM // morphM. +Qed. + +Canonical factm_morphism := Morphism factm_morphM. + +Lemma morphim_factm (A : {set aT}) : ff @* (q @* A) = f @* A. +Proof. +rewrite -morphim_comp /= {1}/morphim /= morphimGK //; last first. + by rewrite (subset_trans sKqKf) ?subsetIl. +apply/setP=> y; apply/morphimP/morphimP; + by case=> x Gx Ax ->{y}; exists x; rewrite //= factmE. +Qed. + +Lemma morphpre_factm (C : {set rT}) : ff @*^-1 C = q @* (f @*^-1 C). +Proof. +apply/setP=> y; rewrite !inE /=; apply/andP/morphimP=> [[]|[x Hx]]; last first. + by case/morphpreP=> Gx Cfx ->; rewrite factmE ?mem_imset ?inE ?Hx. +case/morphimP=> x Hx Gx ->; rewrite factmE //. +by exists x; rewrite // !inE Gx. +Qed. + +Lemma ker_factm : 'ker ff = q @* 'ker f. +Proof. exact: morphpre_factm. Qed. + +Lemma injm_factm : 'injm f -> 'injm ff. +Proof. by rewrite ker_factm => /trivgP->; rewrite morphim1. Qed. + +Lemma injm_factmP : reflect ('ker f = 'ker q) ('injm ff). +Proof. +rewrite ker_factm -morphimIdom sub_morphim_pre ?subsetIl //. +rewrite setIA (setIidPr sGH) (sameP setIidPr eqP) (setIidPl _) // eq_sym. +exact: eqP. +Qed. + +Lemma ker_factm_loc (K : {group aT}) : 'ker_(q @* K) ff = q @* 'ker_K f. +Proof. by rewrite ker_factm -morphimIG. Qed. + +End FactorMorphism. + +Prenex Implicits factm. + +Section InverseMorphism. + +Variables aT rT : finGroupType. +Implicit Types A B : {set aT}. +Implicit Types C D : {set rT}. +Variables (G : {group aT}) (f : {morphism G >-> rT}). +Hypothesis injf : 'injm f. + +Lemma invm_subker : 'ker f \subset 'ker (idm G). +Proof. by rewrite ker_idm. Qed. + +Definition invm := factm invm_subker (subxx _). + +Canonical invm_morphism := Eval hnf in [morphism of invm]. + +Lemma invmE : {in G, cancel f invm}. +Proof. exact: factmE. Qed. + +Lemma invmK : {in f @* G, cancel invm f}. +Proof. by move=> fx; case/morphimP=> x _ Gx ->; rewrite invmE. Qed. + +Lemma morphpre_invm A : invm @*^-1 A = f @* A. +Proof. by rewrite morphpre_factm morphpre_idm morphimIdom. Qed. + +Lemma morphim_invm A : A \subset G -> invm @* (f @* A) = A. +Proof. by move=> sAG; rewrite morphim_factm morphim_idm. Qed. + +Lemma morphim_invmE C : invm @* C = f @*^-1 C. +Proof. +rewrite -morphpreIdom -(morphim_invm (subsetIl _ _)). +by rewrite morphimIdom -morphpreIim morphpreK (subsetIl, morphimIdom). +Qed. + +Lemma injm_proper A B : + A \subset G -> B \subset G -> (f @* A \proper f @* B) = (A \proper B). +Proof. +move=> dA dB; rewrite -morphpre_invm -(morphpre_invm B). +by rewrite morphpre_proper ?morphim_invm. +Qed. + +Lemma injm_invm : 'injm invm. +Proof. by move/can_in_inj/injmP: invmK. Qed. + +Lemma ker_invm : 'ker invm = 1. +Proof. by move/trivgP: injm_invm. Qed. + +Lemma im_invm : invm @* (f @* G) = G. +Proof. exact: morphim_invm. Qed. + +End InverseMorphism. + +Prenex Implicits invm. + +Section InjFactm. + +Variables (gT aT rT : finGroupType) (D G : {group gT}). +Variables (g : {morphism G >-> rT}) (f : {morphism D >-> aT}) (injf : 'injm f). + +Definition ifactm := + tag (domP [morphism of g \o invm injf] (morphpre_invm injf G)). + +Lemma ifactmE : {in D, forall x, ifactm (f x) = g x}. +Proof. +rewrite /ifactm => x Dx; case: domP => f' /= [def_f' _ _ _]. +by rewrite {f'}def_f' //= invmE. +Qed. + +Lemma morphim_ifactm (A : {set gT}) : + A \subset D -> ifactm @* (f @* A) = g @* A. +Proof. +rewrite /ifactm => sAD; case: domP => _ /= [_ _ _ ->]. +by rewrite morphim_comp morphim_invm. +Qed. + +Lemma im_ifactm : G \subset D -> ifactm @* (f @* G) = g @* G. +Proof. exact: morphim_ifactm. Qed. + +Lemma morphpre_ifactm C : ifactm @*^-1 C = f @* (g @*^-1 C). +Proof. +rewrite /ifactm; case: domP => _ /= [_ _ -> _]. +by rewrite morphpre_comp morphpre_invm. +Qed. + +Lemma ker_ifactm : 'ker ifactm = f @* 'ker g. +Proof. exact: morphpre_ifactm. Qed. + +Lemma injm_ifactm : 'injm g -> 'injm ifactm. +Proof. by rewrite ker_ifactm => /trivgP->; rewrite morphim1. Qed. + +End InjFactm. + +(* Reflected (boolean) form of morphism and isomorphism properties *) + +Section ReflectProp. + +Variables aT rT : finGroupType. + +Section Defs. + +Variables (A : {set aT}) (B : {set rT}). + +(* morphic is the morphM property of morphisms seen through morphicP *) +Definition morphic (f : aT -> rT) := + [forall u in [predX A & A], f (u.1 * u.2) == f u.1 * f u.2]. + +Definition isom f := f @: A^# == B^#. + +Definition misom f := morphic f && isom f. + +Definition isog := [exists f : {ffun aT -> rT}, misom f]. + +Section MorphicProps. + +Variable f : aT -> rT. + +Lemma morphicP : reflect {in A &, {morph f : x y / x * y}} (morphic f). +Proof. +apply: (iffP forallP) => [fM x y Ax Ay | fM [x y] /=]. + by apply/eqP; have:= fM (x, y); rewrite inE /= Ax Ay. +by apply/implyP=> /andP[Ax Ay]; rewrite fM. +Qed. + +Definition morphm of morphic f := f : aT -> FinGroup.sort rT. + +Lemma morphmE fM : morphm fM = f. Proof. by []. Qed. + +Canonical morphm_morphism fM := @Morphism _ _ A (morphm fM) (morphicP fM). + +End MorphicProps. + +Lemma misomP f : reflect {fM : morphic f & isom (morphm fM)} (misom f). +Proof. by apply: (iffP andP) => [] [fM fiso] //; exists fM. Qed. + +Lemma misom_isog f : misom f -> isog. +Proof. +case/andP=> fM iso_f; apply/existsP; exists (finfun f). +apply/andP; split; last by rewrite /misom /isom !(eq_imset _ (ffunE f)). +apply/forallP=> u; rewrite !ffunE; exact: forallP fM u. +Qed. + +Lemma isom_isog (D : {group aT}) (f : {morphism D >-> rT}) : + A \subset D -> isom f -> isog. +Proof. +move=> sAD isof; apply: (@misom_isog f); rewrite /misom isof andbT. +apply/morphicP; exact: (sub_in2 (subsetP sAD) (morphM f)). +Qed. + +Lemma isog_isom : isog -> {f : {morphism A >-> rT} | isom f}. +Proof. +by case/existsP/sigW=> f /misomP[fM isom_f]; exists (morphm_morphism fM). +Qed. + +End Defs. + +Infix "\isog" := isog. + +Implicit Arguments isom_isog [A B D]. + +(* The real reflection properties only hold for true groups and morphisms. *) + +Section Main. + +Variables (G : {group aT}) (H : {group rT}). + +Lemma isomP (f : {morphism G >-> rT}) : + reflect ('injm f /\ f @* G = H) (isom G H f). +Proof. +apply: (iffP eqP) => [eqfGH | [injf <-]]; last first. + by rewrite -injmD1 // morphimEsub ?subsetDl. +split. + apply/subsetP=> x /morphpreP[Gx fx1]; have: f x \notin H^# by rewrite inE fx1. + by apply: contraR => ntx; rewrite -eqfGH mem_imset // inE ntx. +rewrite morphimEdom -{2}(setD1K (group1 G)) imsetU eqfGH. +by rewrite imset_set1 morph1 setD1K. +Qed. + +Lemma isogP : + reflect (exists2 f : {morphism G >-> rT}, 'injm f & f @* G = H) (G \isog H). +Proof. +apply: (iffP idP) => [/isog_isom[f /isomP[]] | [f injf fG]]; first by exists f. +by apply: (isom_isog f) => //; apply/isomP. +Qed. + +Variable f : {morphism G >-> rT}. +Hypothesis isoGH : isom G H f. + +Lemma isom_inj : 'injm f. Proof. by have /isomP[] := isoGH. Qed. +Lemma isom_im : f @* G = H. Proof. by have /isomP[] := isoGH. Qed. +Lemma isom_card : #|G| = #|H|. +Proof. by rewrite -isom_im card_injm ?isom_inj. Qed. +Lemma isom_sub_im : H \subset f @* G. Proof. by rewrite isom_im. Qed. +Definition isom_inv := restrm isom_sub_im (invm isom_inj). + +End Main. + +Variables (G : {group aT}) (f : {morphism G >-> rT}). + +Lemma morphim_isom (H : {group aT}) (K : {group rT}) : + H \subset G -> isom H K f -> f @* H = K. +Proof. by case/(restrmP f)=> g [gf _ _ <- //]; rewrite -gf; case/isomP. Qed. + +Lemma sub_isom (A : {set aT}) (C : {set rT}) : + A \subset G -> f @* A = C -> 'injm f -> isom A C f. +Proof. +move=> sAG; case: (restrmP f sAG) => g [_ _ _ img] <-{C} injf. +rewrite /isom -morphimEsub ?morphimDG ?morphim1 //. +by rewrite subDset setUC subsetU ?sAG. +Qed. + +Lemma sub_isog (A : {set aT}) : A \subset G -> 'injm f -> isog A (f @* A). +Proof. by move=> sAG injf; apply: (isom_isog f sAG); exact: sub_isom. Qed. + +Lemma restr_isom_to (A : {set aT}) (C R : {group rT}) (sAG : A \subset G) : + f @* A = C -> isom G R f -> isom A C (restrm sAG f). +Proof. by move=> defC /isomP[inj_f _]; apply: sub_isom. Qed. + +Lemma restr_isom (A : {group aT}) (R : {group rT}) (sAG : A \subset G) : + isom G R f -> isom A (f @* A) (restrm sAG f). +Proof. exact: restr_isom_to. Qed. + +End ReflectProp. + +Arguments Scope isom [_ _ group_scope group_scope _]. +Arguments Scope morphic [_ _ group_scope _]. +Arguments Scope misom [_ _ group_scope group_scope _]. +Arguments Scope isog [_ _ group_scope group_scope]. + +Implicit Arguments morphicP [aT rT A f]. +Implicit Arguments misomP [aT rT A B f]. +Implicit Arguments isom_isog [aT rT A B D]. +Implicit Arguments isomP [aT rT G H f]. +Implicit Arguments isogP [aT rT G H]. +Prenex Implicits morphic morphicP morphm isom isog isomP misomP isogP. +Notation "x \isog y":= (isog x y). + +Section Isomorphisms. + +Variables gT hT kT : finGroupType. +Variables (G : {group gT}) (H : {group hT}) (K : {group kT}). + +Lemma idm_isom : isom G G (idm G). +Proof. exact: sub_isom (im_idm G) (injm_idm G). Qed. + +Lemma isog_refl : G \isog G. Proof. exact: isom_isog idm_isom. Qed. + +Lemma card_isog : G \isog H -> #|G| = #|H|. +Proof. case/isogP=> f injf <-; apply: isom_card (f) _; exact/isomP. Qed. + +Lemma isog_abelian : G \isog H -> abelian G = abelian H. +Proof. by case/isogP=> f injf <-; rewrite injm_abelian. Qed. + +Lemma trivial_isog : G :=: 1 -> H :=: 1 -> G \isog H. +Proof. +move=> -> ->; apply/isogP. +exists [morphism of @trivm gT hT 1]; rewrite /= ?morphim1 //. +rewrite ker_trivm; exact: subxx. +Qed. + +Lemma isog_eq1 : G \isog H -> (G :==: 1) = (H :==: 1). +Proof. by move=> isoGH; rewrite !trivg_card1 card_isog. Qed. + +Lemma isom_sym (f : {morphism G >-> hT}) (isoGH : isom G H f) : + isom H G (isom_inv isoGH). +Proof. +rewrite sub_isom 1?injm_restrm ?injm_invm // im_restrm. +by rewrite -(isom_im isoGH) im_invm. +Qed. + +Lemma isog_symr : G \isog H -> H \isog G. +Proof. by case/isog_isom=> f /isom_sym/isom_isog->. Qed. + +Lemma isog_trans : G \isog H -> H \isog K -> G \isog K. +Proof. +case/isogP=> f injf <-; case/isogP=> g injg <-. +have defG: f @*^-1 (f @* G) = G by rewrite morphimGK ?subsetIl. +rewrite -morphim_comp -{1 8}defG. +by apply/isogP; exists [morphism of g \o f]; rewrite ?injm_comp. +Qed. + +Lemma nclasses_isog : G \isog H -> #|classes G| = #|classes H|. +Proof. by case/isogP=> f injf <-; rewrite nclasses_injm. Qed. + +End Isomorphisms. + +Section IsoBoolEquiv. + +Variables gT hT kT : finGroupType. +Variables (G : {group gT}) (H : {group hT}) (K : {group kT}). + +Lemma isog_sym : (G \isog H) = (H \isog G). +Proof. apply/idP/idP; exact: isog_symr. Qed. + +Lemma isog_transl : G \isog H -> (G \isog K) = (H \isog K). +Proof. +by move=> iso; apply/idP/idP; apply: isog_trans; rewrite // -isog_sym. +Qed. + +Lemma isog_transr : G \isog H -> (K \isog G) = (K \isog H). +Proof. +by move=> iso; apply/idP/idP; move/isog_trans; apply; rewrite // -isog_sym. +Qed. + +End IsoBoolEquiv. + +Section Homg. + +Implicit Types rT gT aT : finGroupType. + +Definition homg rT aT (C : {set rT}) (D : {set aT}) := + [exists (f : {ffun aT -> rT} | morphic D f), f @: D == C]. + +Lemma homgP rT aT (C : {set rT}) (D : {set aT}) : + reflect (exists f : {morphism D >-> rT}, f @* D = C) (homg C D). +Proof. +apply: (iffP exists_eq_inP) => [[f fM <-] | [f <-]]. + by exists (morphm_morphism fM); rewrite /morphim /= setIid. +exists (finfun f); first by apply/morphicP=> x y Dx Dy; rewrite !ffunE morphM. +by rewrite /morphim setIid; apply: eq_imset => x; rewrite ffunE. +Qed. + +Lemma morphim_homg aT rT (A D : {set aT}) (f : {morphism D >-> rT}) : + A \subset D -> homg (f @* A) A. +Proof. +move=> sAD; apply/homgP; exists (restrm_morphism sAD f). +by rewrite morphim_restrm setIid. +Qed. + +Lemma leq_homg rT aT (C : {set rT}) (G : {group aT}) : + homg C G -> #|C| <= #|G|. +Proof. by case/homgP=> f <-; apply: leq_morphim. Qed. + +Lemma homg_refl aT (A : {set aT}) : homg A A. +Proof. by apply/homgP; exists (idm_morphism A); rewrite im_idm. Qed. + +Lemma homg_trans aT (B : {set aT}) rT (C : {set rT}) gT (G : {group gT}) : + homg C B -> homg B G -> homg C G. +Proof. +move=> homCB homBG; case/homgP: homBG homCB => fG <- /homgP[fK <-]. +by rewrite -morphim_comp morphim_homg // -sub_morphim_pre. +Qed. + +Lemma isogEcard rT aT (G : {group rT}) (H : {group aT}) : + (G \isog H) = (homg G H) && (#|H| <= #|G|). +Proof. +rewrite isog_sym; apply/isogP/andP=> [[f injf <-] | []]. + by rewrite leq_eqVlt eq_sym card_im_injm injf morphim_homg. +case/homgP=> f <-; rewrite leq_eqVlt eq_sym card_im_injm. +by rewrite ltnNge leq_morphim orbF; exists f. +Qed. + +Lemma isog_hom rT aT (G : {group rT}) (H : {group aT}) : G \isog H -> homg G H. +Proof. by rewrite isogEcard; case/andP. Qed. + +Lemma isogEhom rT aT (G : {group rT}) (H : {group aT}) : + (G \isog H) = homg G H && homg H G. +Proof. +apply/idP/andP=> [isoGH | [homGH homHG]]. + by rewrite !isog_hom // isog_sym. +by rewrite isogEcard homGH leq_homg. +Qed. + +Lemma eq_homgl gT aT rT (G : {group gT}) (H : {group aT}) (K : {group rT}) : + G \isog H -> homg G K = homg H K. +Proof. +by rewrite isogEhom => /andP[homGH homHG]; apply/idP/idP; exact: homg_trans. +Qed. + +Lemma eq_homgr gT rT aT (G : {group gT}) (H : {group rT}) (K : {group aT}) : + G \isog H -> homg K G = homg K H. +Proof. +rewrite isogEhom => /andP[homGH homHG]. +by apply/idP/idP=> homK; exact: homg_trans homK _. +Qed. + +End Homg. + +Arguments Scope homg [_ _ group_scope group_scope]. +Notation "G \homg H" := (homg G H) + (at level 70, no associativity) : group_scope. + +Implicit Arguments homgP [rT aT C D]. + +(* Isomorphism between a group and its subtype. *) + +Section SubMorphism. + +Variables (gT : finGroupType) (G : {group gT}). + +Canonical sgval_morphism := Morphism (@sgvalM _ G). +Canonical subg_morphism := Morphism (@subgM _ G). + +Lemma injm_sgval : 'injm sgval. +Proof. apply/injmP; apply: in2W; exact: subg_inj. Qed. + +Lemma injm_subg : 'injm (subg G). +Proof. apply/injmP; exact: can_in_inj (@subgK _ _). Qed. +Hint Resolve injm_sgval injm_subg. + +Lemma ker_sgval : 'ker sgval = 1. Proof. exact/trivgP. Qed. +Lemma ker_subg : 'ker (subg G) = 1. Proof. exact/trivgP. Qed. + +Lemma im_subg : subg G @* G = [subg G]. +Proof. +apply/eqP; rewrite -subTset morphimEdom. +by apply/subsetP=> u _; rewrite -(sgvalK u) mem_imset ?subgP. +Qed. + +Lemma sgval_sub A : sgval @* A \subset G. +Proof. apply/subsetP=> x; case/imsetP=> u _ ->; exact: subgP. Qed. + +Lemma sgvalmK A : subg G @* (sgval @* A) = A. +Proof. +apply/eqP; rewrite eqEcard !card_injm ?subsetT ?sgval_sub // leqnn andbT. +rewrite -morphim_comp; apply/subsetP=> _ /morphimP[v _ Av ->] /=. +by rewrite sgvalK. +Qed. + +Lemma subgmK (A : {set gT}) : A \subset G -> sgval @* (subg G @* A) = A. +Proof. +move=> sAG; apply/eqP; rewrite eqEcard !card_injm ?subsetT //. +rewrite leqnn andbT -morphim_comp morphimE /= morphpreT. +by apply/subsetP=> _ /morphimP[v Gv Av ->] /=; rewrite subgK. +Qed. + +Lemma im_sgval : sgval @* [subg G] = G. +Proof. by rewrite -{2}im_subg subgmK. Qed. + +Lemma isom_subg : isom G [subg G] (subg G). +Proof. by apply/isomP; rewrite im_subg. Qed. + +Lemma isom_sgval : isom [subg G] G sgval. +Proof. by apply/isomP; rewrite im_sgval. Qed. + +Lemma isog_subg : isog G [subg G]. +Proof. exact: isom_isog isom_subg. Qed. + +End SubMorphism. + |
