aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/fingroup/morphism.v
diff options
context:
space:
mode:
authorGeorges Gonthier2018-12-13 12:55:43 +0100
committerGeorges Gonthier2018-12-13 12:55:43 +0100
commit0b1ea03dafcf36880657ba910eec28ab78ccd018 (patch)
tree60a84ff296299226d530dd0b495be24fd7675748 /mathcomp/fingroup/morphism.v
parentfa9b7b19fc0409f3fdfa680e08f40a84594e8307 (diff)
Adjust implicits of cancellation lemmas
Like injectivity lemmas, instances of cancellation lemmas (whose conclusion is `cancel ? ?`, `{in ?, cancel ? ?}`, `pcancel`, or `ocancel`) are passed to generic lemmas such as `canRL` or `canLR_in`. Thus such lemmas should not have trailing on-demand implicits _just before_ the `cancel` conclusion, as these would be inconvenient to insert (requiring essentially an explicit eta-expansion). We therefore use `Arguments` or `Prenex Implicits` directives to make all such arguments maximally inserted implicits. We don’t, however make other arguments implicit, so as not to spoil direct instantiation of the lemmas (in, e.g., `rewrite -[y](invmK injf)`). We have also tried to do this with lemmas whose statement matches a `cancel`, i.e., ending in `forall x, g (E[x]) = x` (where pattern unification will pick up `f = fun x => E[x]`). We also adjusted implicits of a few stray injectivity lemmas, and defined constants. We provide a shorthand for reindexing a bigop with a permutation. Finally we used the new implicit signatures to simplify proofs that use injectivity or cancellation lemmas.
Diffstat (limited to 'mathcomp/fingroup/morphism.v')
-rw-r--r--mathcomp/fingroup/morphism.v8
1 files changed, 6 insertions, 2 deletions
diff --git a/mathcomp/fingroup/morphism.v b/mathcomp/fingroup/morphism.v
index cb02991..aa2a809 100644
--- a/mathcomp/fingroup/morphism.v
+++ b/mathcomp/fingroup/morphism.v
@@ -873,6 +873,7 @@ Notation "f @*^-1 M" := (morphpre_group (MorPhantom f) M) : Group_scope.
Notation "f @: D" := (morph_dom_group f D) : Group_scope.
Arguments injmP {aT rT D f}.
+Arguments morphpreK {aT rT D f} [R] sRf.
Section IdentityMorphism.
@@ -1491,10 +1492,10 @@ Canonical sgval_morphism := Morphism (@sgvalM _ G).
Canonical subg_morphism := Morphism (@subgM _ G).
Lemma injm_sgval : 'injm sgval.
-Proof. by apply/injmP; apply: in2W; apply: subg_inj. Qed.
+Proof. exact/injmP/(in2W subg_inj). Qed.
Lemma injm_subg : 'injm (subg G).
-Proof. by apply/injmP; apply: can_in_inj (@subgK _ _). Qed.
+Proof. exact/injmP/(can_in_inj subgK). Qed.
Hint Resolve injm_sgval injm_subg : core.
Lemma ker_sgval : 'ker sgval = 1. Proof. exact/trivgP. Qed.
@@ -1537,3 +1538,6 @@ Proof. exact: isom_isog isom_subg. Qed.
End SubMorphism.
+Arguments sgvalmK {gT G} A.
+Arguments subgmK {gT G} [A] sAG.
+