diff options
| author | Cyril Cohen | 2018-11-24 17:58:35 +0100 |
|---|---|---|
| committer | GitHub | 2018-11-24 17:58:35 +0100 |
| commit | add6e85884691faef1bf8742e803374815672cc2 (patch) | |
| tree | 2ffb41f5afa11a147989c8efcc1dcb295ae2ed2b /mathcomp/fingroup/action.v | |
| parent | 967088a6f87405a93ce21971392c58996df8c99f (diff) | |
| parent | f049e51c39077a025907ea87c08178dad1841801 (diff) | |
Merge pull request #249 from anton-trunov/prenex-implicits
Merge Arguments and Prenex Implicits
Diffstat (limited to 'mathcomp/fingroup/action.v')
| -rw-r--r-- | mathcomp/fingroup/action.v | 32 |
1 files changed, 14 insertions, 18 deletions
diff --git a/mathcomp/fingroup/action.v b/mathcomp/fingroup/action.v index 5c5dcdc..ffea847 100644 --- a/mathcomp/fingroup/action.v +++ b/mathcomp/fingroup/action.v @@ -488,10 +488,9 @@ Arguments act_inj {aT D rT} to _ [x1 x2]. Notation "to ^*" := (set_action to) : action_scope. -Arguments orbitP [aT D rT to A x y]. -Arguments afixP [aT D rT to A x]. -Arguments afix1P [aT D rT to a x]. -Prenex Implicits orbitP afixP afix1P. +Arguments orbitP {aT D rT to A x y}. +Arguments afixP {aT D rT to A x}. +Arguments afix1P {aT D rT to a x}. Arguments reindex_astabs [aT D rT] to [vT idx op S] a [F]. Arguments reindex_acts [aT D rT] to [vT idx op S A a F]. @@ -876,10 +875,9 @@ Qed. End PartialAction. Arguments orbit_transversal _ _%g _ _%act _%g _%g. -Arguments orbit_in_eqP [aT D rT to G x y]. -Arguments orbit1P [aT D rT to G x]. +Arguments orbit_in_eqP {aT D rT to G x y}. +Arguments orbit1P {aT D rT to G x}. Arguments contra_orbit [aT D rT] to G [x y]. -Prenex Implicits orbit_in_eqP orbit1P. Notation "''C' ( S | to )" := (astab_group to S) : Group_scope. Notation "''C_' A ( S | to )" := (setI_group A 'C(S | to)) : Group_scope. @@ -1005,7 +1003,7 @@ Proof. apply: (iffP idP) => [nSA x|nSA]; first exact: acts_act. by apply/subsetP=> a Aa; rewrite !inE; apply/subsetP=> x; rewrite inE nSA. Qed. -Arguments actsP [A S]. +Arguments actsP {A S}. Lemma setact_orbit A x b : to^* (orbit to A x) b = orbit to (A :^ b) (to x b). Proof. @@ -1134,14 +1132,13 @@ Qed. End TotalActions. -Arguments astabP [aT rT to S a]. -Arguments orbit_eqP [aT rT to G x y]. -Arguments astab1P [aT rT to x a]. -Arguments astabsP [aT rT to S a]. -Arguments atransP [aT rT to G S]. -Arguments actsP [aT rT to A S]. -Arguments faithfulP [aT rT to A S]. -Prenex Implicits astabP orbit_eqP astab1P astabsP atransP actsP faithfulP. +Arguments astabP {aT rT to S a}. +Arguments orbit_eqP {aT rT to G x y}. +Arguments astab1P {aT rT to x a}. +Arguments astabsP {aT rT to S a}. +Arguments atransP {aT rT to G S}. +Arguments actsP {aT rT to A S}. +Arguments faithfulP {aT rT to A S}. Section Restrict. @@ -1634,8 +1631,7 @@ Proof. by apply/permP=> x; rewrite permE. Qed. End PermAction. -Arguments perm_act1P [rT a]. -Prenex Implicits perm_act1P. +Arguments perm_act1P {rT a}. Notation "'P" := (perm_action _) (at level 8) : action_scope. |
