aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/field
diff options
context:
space:
mode:
authorKazuhiko Sakaguchi2020-11-25 22:14:58 +0900
committerKazuhiko Sakaguchi2020-11-25 22:29:55 +0900
commitd844896e6418bb00418964bb4ae4219e2bd6b69c (patch)
treeccb40cfc9264241424aba156aa6e5289c9acfa8d /mathcomp/field
parent43796130c3e59c0651a283e6654a7d82acbfeed3 (diff)
Rename `all1rel` to `all2rel`, restate `eq_allrel`, and add CHANGELOG entries
Co-authored-by: Cyril Cohen <CohenCyril@users.noreply.github.com>
Diffstat (limited to 'mathcomp/field')
-rw-r--r--mathcomp/field/falgebra.v2
-rw-r--r--mathcomp/field/separable.v2
2 files changed, 2 insertions, 2 deletions
diff --git a/mathcomp/field/falgebra.v b/mathcomp/field/falgebra.v
index 97a5f22..8fb123e 100644
--- a/mathcomp/field/falgebra.v
+++ b/mathcomp/field/falgebra.v
@@ -1078,7 +1078,7 @@ Section Class_Def.
Variables aT rT : FalgType K.
Definition ahom_in (U : {vspace aT}) (f : 'Hom(aT, rT)) :=
- all1rel (fun x y : aT => f (x * y) == f x * f y) (vbasis U) && (f 1 == 1).
+ all2rel (fun x y : aT => f (x * y) == f x * f y) (vbasis U) && (f 1 == 1).
Lemma ahom_inP {f : 'Hom(aT, rT)} {U : {vspace aT}} :
reflect ({in U &, {morph f : x y / x * y >-> x * y}} * (f 1 = 1))
diff --git a/mathcomp/field/separable.v b/mathcomp/field/separable.v
index 7e208cd..d07839c 100644
--- a/mathcomp/field/separable.v
+++ b/mathcomp/field/separable.v
@@ -289,7 +289,7 @@ Variables (K : {vspace L}) (D : 'End(L)).
(* the deriviations used here are going to be linear, so we only define *)
(* the Derivation predicate for linear endomorphisms. *)
Definition Derivation : bool :=
- all1rel (fun u v => D (u * v) == D u * v + u * D v) (vbasis K).
+ all2rel (fun u v => D (u * v) == D u * v + u * D v) (vbasis K).
Hypothesis derD : Derivation.