aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/field
diff options
context:
space:
mode:
authorCyril Cohen2018-12-11 13:36:32 +0100
committerGitHub2018-12-11 13:36:32 +0100
commitb2d25dc356c4a2500d861e7d3eb5a272a3072129 (patch)
tree10e3129f0584233d7fb825973794b517371c6024 /mathcomp/field
parent316cca94aef28c2023cd823c588b140e13d0aded (diff)
parent2e6e0001f8215e3c42f2557df42e0d6486035c07 (diff)
Merge pull request #252 from anton-trunov/implicit-core-hint-db
Fix some new warnings emitted by Coq 8.10
Diffstat (limited to 'mathcomp/field')
-rw-r--r--mathcomp/field/algC.v23
-rw-r--r--mathcomp/field/algnum.v8
-rw-r--r--mathcomp/field/closed_field.v2
-rw-r--r--mathcomp/field/cyclotomic.v2
4 files changed, 18 insertions, 17 deletions
diff --git a/mathcomp/field/algC.v b/mathcomp/field/algC.v
index 4b37a9c..fc01763 100644
--- a/mathcomp/field/algC.v
+++ b/mathcomp/field/algC.v
@@ -607,7 +607,7 @@ Local Notation intrp := (map_poly intr).
Local Notation pZtoQ := (map_poly ZtoQ).
Local Notation pZtoC := (map_poly ZtoC).
Local Notation pQtoC := (map_poly ratr).
-Local Hint Resolve (@intr_inj _ : injective ZtoC).
+Local Hint Resolve (@intr_inj _ : injective ZtoC) : core.
(* Specialization of a few basic ssrnum order lemmas. *)
@@ -645,7 +645,8 @@ Definition algC_algebraic x := Algebraics.Implementation.algebraic x.
Lemma Creal0 : 0 \is Creal. Proof. exact: rpred0. Qed.
Lemma Creal1 : 1 \is Creal. Proof. exact: rpred1. Qed.
-Hint Resolve Creal0 Creal1. (* Trivial cannot resolve a general real0 hint. *)
+(* Trivial cannot resolve a general real0 hint. *)
+Hint Resolve Creal0 Creal1 : core.
Lemma algCrect x : x = 'Re x + 'i * 'Im x.
Proof. by rewrite [LHS]Crect. Qed.
@@ -655,7 +656,7 @@ Proof. by rewrite Creal_Re. Qed.
Lemma algCreal_Im x : 'Im x \is Creal.
Proof. by rewrite Creal_Im. Qed.
-Hint Resolve algCreal_Re algCreal_Im.
+Hint Resolve algCreal_Re algCreal_Im : core.
(* Integer subset. *)
(* Not relying on the undocumented interval library, for now. *)
@@ -680,7 +681,7 @@ Lemma floorCK : {in Cint, cancel floorC intr}. Proof. by move=> z /eqP. Qed.
Lemma floorC0 : floorC 0 = 0. Proof. exact: (intCK 0). Qed.
Lemma floorC1 : floorC 1 = 1. Proof. exact: (intCK 1). Qed.
-Hint Resolve floorC0 floorC1.
+Hint Resolve floorC0 floorC1 : core.
Lemma floorCpK (p : {poly algC}) :
p \is a polyOver Cint -> map_poly intr (map_poly floorC p) = p.
@@ -723,7 +724,7 @@ Proof. by case/CintP=> m ->; apply: rpred_int. Qed.
Lemma Cint0 : 0 \in Cint. Proof. exact: (Cint_int 0). Qed.
Lemma Cint1 : 1 \in Cint. Proof. exact: (Cint_int 1). Qed.
-Hint Resolve Cint0 Cint1.
+Hint Resolve Cint0 Cint1 : core.
Fact Cint_key : pred_key Cint. Proof. by []. Qed.
Fact Cint_subring : subring_closed Cint.
@@ -814,7 +815,7 @@ Proof. by case/CnatP=> n ->; apply: rpred_nat. Qed.
Lemma Cnat_nat n : n%:R \in Cnat. Proof. by apply/CnatP; exists n. Qed.
Lemma Cnat0 : 0 \in Cnat. Proof. exact: (Cnat_nat 0). Qed.
Lemma Cnat1 : 1 \in Cnat. Proof. exact: (Cnat_nat 1). Qed.
-Hint Resolve Cnat_nat Cnat0 Cnat1.
+Hint Resolve Cnat_nat Cnat0 Cnat1 : core.
Fact Cnat_key : pred_key Cnat. Proof. by []. Qed.
Fact Cnat_semiring : semiring_closed Cnat.
@@ -970,7 +971,7 @@ Proof. by move=> x_dv_y /dvdCP[m Zm ->]; apply: dvdC_mull. Qed.
Lemma dvdC_refl x : (x %| x)%C.
Proof. by apply/dvdCP; exists 1; rewrite ?mul1r. Qed.
-Hint Resolve dvdC_refl.
+Hint Resolve dvdC_refl : core.
Fact dvdC_key x : pred_key (dvdC x). Proof. by []. Qed.
Lemma dvdC_zmod x : zmod_closed (dvdC x).
@@ -1004,7 +1005,7 @@ Lemma eqCmod_refl e x : (x == x %[mod e])%C.
Proof. by rewrite /eqCmod subrr rpred0. Qed.
Lemma eqCmodm0 e : (e == 0 %[mod e])%C. Proof. by rewrite /eqCmod subr0. Qed.
-Hint Resolve eqCmod_refl eqCmodm0.
+Hint Resolve eqCmod_refl eqCmodm0 : core.
Lemma eqCmod0 e x : (x == 0 %[mod e])%C = (e %| x)%C.
Proof. by rewrite /eqCmod subr0. Qed.
@@ -1091,7 +1092,7 @@ Qed.
Lemma Crat0 : 0 \in Crat. Proof. by apply/CratP; exists 0; rewrite rmorph0. Qed.
Lemma Crat1 : 1 \in Crat. Proof. by apply/CratP; exists 1; rewrite rmorph1. Qed.
-Hint Resolve Crat0 Crat1.
+Hint Resolve Crat0 Crat1 : core.
Fact Crat_key : pred_key Crat. Proof. by []. Qed.
Fact Crat_divring_closed : divring_closed Crat.
@@ -1236,5 +1237,5 @@ Proof. by move=> _ u /CintP[m ->]; apply: rpredZint. Qed.
End PredCmod.
End AlgebraicsTheory.
-Hint Resolve Creal0 Creal1 Cnat_nat Cnat0 Cnat1 Cint0 Cint1 floorC0 Crat0 Crat1.
-Hint Resolve dvdC0 dvdC_refl eqCmod_refl eqCmodm0.
+Hint Resolve Creal0 Creal1 Cnat_nat Cnat0 Cnat1 Cint0 Cint1 floorC0 Crat0 Crat1 : core.
+Hint Resolve dvdC0 dvdC_refl eqCmod_refl eqCmodm0 : core.
diff --git a/mathcomp/field/algnum.v b/mathcomp/field/algnum.v
index 5d78cac..1db4aa4 100644
--- a/mathcomp/field/algnum.v
+++ b/mathcomp/field/algnum.v
@@ -56,7 +56,7 @@ Local Notation pZtoQ := (map_poly ZtoQ).
Local Notation pZtoC := (map_poly ZtoC).
Local Notation pQtoC := (map_poly ratr).
-Local Hint Resolve (@intr_inj _ : injective ZtoC).
+Local Hint Resolve (@intr_inj _ : injective ZtoC) : core.
Local Notation QtoCm := [rmorphism of QtoC].
(* Number fields and rational spans. *)
@@ -550,7 +550,7 @@ Proof. by rewrite Aint_Cint ?Cint_int. Qed.
Lemma Aint0 : 0 \in Aint. Proof. exact: (Aint_int 0). Qed.
Lemma Aint1 : 1 \in Aint. Proof. exact: (Aint_int 1). Qed.
-Hint Resolve Aint0 Aint1.
+Hint Resolve Aint0 Aint1 : core.
Lemma Aint_unity_root n x : (n > 0)%N -> n.-unity_root x -> x \in Aint.
Proof.
@@ -702,7 +702,7 @@ Notation "x != y %[mod e ]" := (~~ (eqAmod e x y)) : algC_scope.
Lemma eqAmod_refl e x : (x == x %[mod e])%A.
Proof. by rewrite /eqAmod subrr rpred0. Qed.
-Hint Resolve eqAmod_refl.
+Hint Resolve eqAmod_refl : core.
Lemma eqAmod_sym e x y : ((x == y %[mod e]) = (y == x %[mod e]))%A.
Proof. by rewrite /eqAmod -opprB rpredN. Qed.
@@ -739,7 +739,7 @@ Qed.
Lemma eqAmodm0 e : (e == 0 %[mod e])%A.
Proof. by rewrite /eqAmod subr0 unfold_in; case: ifPn => // /divff->. Qed.
-Hint Resolve eqAmodm0.
+Hint Resolve eqAmodm0 : core.
Lemma eqAmodMr e :
{in Aint, forall z x y, x == y %[mod e] -> x * z == y * z %[mod e]}%A.
diff --git a/mathcomp/field/closed_field.v b/mathcomp/field/closed_field.v
index 009c1ae..76039d1 100644
--- a/mathcomp/field/closed_field.v
+++ b/mathcomp/field/closed_field.v
@@ -95,7 +95,7 @@ Definition qf_cps T D (x : cps T) :=
Lemma qf_cps_ret T D (x : T) : D x -> qf_cps D (ret x).
Proof. move=> ??; exact. Qed.
-Hint Resolve qf_cps_ret.
+Hint Resolve qf_cps_ret : core.
Lemma qf_cps_bind T1 D1 T2 D2 (x : cps T1) (f : T1 -> cps T2) :
qf_cps D1 x -> (forall x, D1 x -> qf_cps D2 (f x)) -> qf_cps D2 (bind x f).
diff --git a/mathcomp/field/cyclotomic.v b/mathcomp/field/cyclotomic.v
index 80bdf50..afb0b0b 100644
--- a/mathcomp/field/cyclotomic.v
+++ b/mathcomp/field/cyclotomic.v
@@ -122,7 +122,7 @@ Local Notation pZtoQ := (map_poly ZtoQ).
Local Notation pZtoC := (map_poly ZtoC).
Local Notation pQtoC := (map_poly ratr).
-Local Hint Resolve (@intr_inj [numDomainType of algC]).
+Local Hint Resolve (@intr_inj [numDomainType of algC]) : core.
Local Notation QtoC_M := (ratr_rmorphism [numFieldType of algC]).
Lemma C_prim_root_exists n : (n > 0)%N -> {z : algC | n.-primitive_root z}.