diff options
| author | Georges Gonthier | 2019-11-26 17:28:36 +0100 |
|---|---|---|
| committer | Georges Gonthier | 2019-11-27 17:13:20 +0100 |
| commit | 4bd5ba38e4f6c6456a8fcc39364a67b51fde92f2 (patch) | |
| tree | 3829794151b4611775d602cb721e5507393671cc /mathcomp/field | |
| parent | f43a928dc62abd870c3b15b4147b2ad76029b701 (diff) | |
Explicit `bigop` enumeration handling
Added lemmas `big_enum_cond`, `big_enum` and `big_enumP` to handle more
explicitly big ops iterating over explicit enumerations in a `finType`.
The previous practice was to rely on the convertibility between
`enum A` and `filter A (index_enum T)`, sometimes explicitly via the
`filter_index_enum` equality, more often than not implicitly.
Both are likely to fail after the integration of `finmap`, as the
`choiceType` theory can’t guarantee that the order in selected
enumerations is consistent.
For this reason `big_enum` and the related (but currently unused)
`big_image` lemmas are restricted to the abelian case. The `big_enumP`
lemma can be used to handle enumerations in the non-abelian case, as
explained in the `bigop.v` internal documentation.
The Changelog entry enjoins clients to stop relying on either
`filter_index_enum` and convertibility (though this PR still provides
both), and warns about the restriction of the `big_image` lemma set to
the abelian case, as it it a possible source of incompatibility.
Diffstat (limited to 'mathcomp/field')
| -rw-r--r-- | mathcomp/field/algebraics_fundamentals.v | 3 | ||||
| -rw-r--r-- | mathcomp/field/cyclotomic.v | 22 | ||||
| -rw-r--r-- | mathcomp/field/finfield.v | 11 | ||||
| -rw-r--r-- | mathcomp/field/galois.v | 7 |
4 files changed, 22 insertions, 21 deletions
diff --git a/mathcomp/field/algebraics_fundamentals.v b/mathcomp/field/algebraics_fundamentals.v index 18fa55a..acafd8f 100644 --- a/mathcomp/field/algebraics_fundamentals.v +++ b/mathcomp/field/algebraics_fundamentals.v @@ -216,7 +216,8 @@ have FpxF q: Fpx (q ^ FtoL) = root (q ^ FtoL) x. pose p_ (I : {set 'I_n}) := \prod_(i <- enum I) ('X - (r`_i)%:P). have{px0 Dp} /ex_minset[I /minsetP[/andP[FpI pIx0] minI]]: exists I, Fpx (p_ I). exists setT; suffices ->: p_ setT = p ^ FtoL by rewrite FpxF. - by rewrite Dp (big_nth 0) big_mkord /p_ (eq_enum (in_set _)) big_filter. + rewrite Dp (big_nth 0) big_mkord /p_ big_enum /=. + by apply/eq_bigl=> i; rewrite inE. have{p} [p DpI]: {p | p_ I = p ^ FtoL}. exists (p_ I ^ (fun y => if isF y is left Fy then sval (sig_eqW Fy) else 0)). rewrite -map_poly_comp map_poly_id // => y /(allP FpI) /=. diff --git a/mathcomp/field/cyclotomic.v b/mathcomp/field/cyclotomic.v index d80a909..6e7432f 100644 --- a/mathcomp/field/cyclotomic.v +++ b/mathcomp/field/cyclotomic.v @@ -39,8 +39,9 @@ Proof. exact: monic_prod_XsubC. Qed. Lemma size_cyclotomic z n : size (cyclotomic z n) = (totient n).+1. Proof. -rewrite /cyclotomic -big_filter filter_index_enum size_prod_XsubC; congr _.+1. -rewrite -cardE -sum1_card totient_count_coprime -big_mkcond big_mkord. +rewrite /cyclotomic -big_filter size_prod_XsubC; congr _.+1. +case: big_enumP => _ _ _ [_ ->]. +rewrite totient_count_coprime -big_mkcond big_mkord -sum1_card. by apply: eq_bigl => k; rewrite coprime_sym. Qed. @@ -63,14 +64,13 @@ Let n_gt0 := prim_order_gt0 prim_z. Lemma root_cyclotomic x : root (cyclotomic z n) x = n.-primitive_root x. Proof. -rewrite /cyclotomic -big_filter filter_index_enum. -rewrite -(big_map _ xpredT (fun y => 'X - y%:P)) root_prod_XsubC. +transitivity (x \in [seq z ^+ i | i : 'I_n in [pred i : 'I_n | coprime i n]]). + by rewrite -root_prod_XsubC big_image. apply/imageP/idP=> [[k co_k_n ->] | prim_x]. by rewrite prim_root_exp_coprime. have [k Dx] := prim_rootP prim_z (prim_expr_order prim_x). -exists (Ordinal (ltn_pmod k n_gt0)) => /=. - by rewrite unfold_in /= coprime_modl -(prim_root_exp_coprime k prim_z) -Dx. -by rewrite prim_expr_mod. +exists (Ordinal (ltn_pmod k n_gt0)) => /=; last by rewrite prim_expr_mod. +by rewrite inE coprime_modl -(prim_root_exp_coprime k prim_z) -Dx. Qed. Lemma prod_cyclotomic : @@ -212,9 +212,7 @@ Proof. have [-> | n_gt0] := posnP n; first by rewrite Cyclotomic0 polyseq1. have [z prim_z] := C_prim_root_exists n_gt0. rewrite -(size_map_inj_poly (can_inj intCK)) //. -rewrite (Cintr_Cyclotomic prim_z) -[_ n]big_filter filter_index_enum. -rewrite size_prod_XsubC -cardE totient_count_coprime big_mkord -big_mkcond /=. -by rewrite (eq_card (fun _ => coprime_sym _ _)) sum1_card. +by rewrite (Cintr_Cyclotomic prim_z) size_cyclotomic. Qed. Lemma minCpoly_cyclotomic n z : @@ -252,8 +250,8 @@ have [zk gzk0]: exists zk, root (pZtoC g) zk. by exists rg`_0; rewrite Dg root_prod_XsubC mem_nth. have [k cokn Dzk]: exists2 k, coprime k n & zk = z ^+ k. have: root pz zk by rewrite -Dpz -Dfg rmorphM rootM gzk0 orbT. - rewrite -[pz]big_filter -(big_map _ xpredT (fun a => 'X - a%:P)). - by rewrite root_prod_XsubC => /imageP[k]; exists k. + rewrite -[pz](big_image _ _ _ (fun r => 'X - r%:P)) root_prod_XsubC. + by case/imageP=> k; exists k. have co_fg (R : idomainType): n%:R != 0 :> R -> @coprimep R (intrp f) (intrp g). move=> nz_n; have: separable_poly (intrp ('X^n - 1) : {poly R}). by rewrite rmorphB rmorph1 /= map_polyXn separable_Xn_sub_1. diff --git a/mathcomp/field/finfield.v b/mathcomp/field/finfield.v index b184ed7..19871cb 100644 --- a/mathcomp/field/finfield.v +++ b/mathcomp/field/finfield.v @@ -99,7 +99,7 @@ set n := #|F|; set oppX := - 'X; set pF := LHS. have le_oppX_n: size oppX <= n by rewrite size_opp size_polyX finRing_gt1. have: size pF = (size (enum F)).+1 by rewrite -cardE size_addl size_polyXn. move/all_roots_prod_XsubC->; last by rewrite uniq_rootsE enum_uniq. - by rewrite enumT lead_coefDl ?size_polyXn // lead_coefXn scale1r. + by rewrite big_enum lead_coefDl ?size_polyXn // lead_coefXn scale1r. by apply/allP=> x _; rewrite rootE !hornerE hornerXn expf_card subrr. Qed. @@ -186,7 +186,7 @@ Canonical fieldExt_finFieldType fT := [finFieldType of fT]. Lemma finField_splittingField_axiom fT : SplittingField.axiom fT. Proof. exists ('X^#|fT| - 'X); first by rewrite rpredB 1?rpredX ?polyOverX. -exists (enum fT); first by rewrite enumT finField_genPoly eqpxx. +exists (enum fT); first by rewrite big_enum finField_genPoly eqpxx. by apply/vspaceP=> x; rewrite memvf seqv_sub_adjoin ?mem_enum. Qed. @@ -363,9 +363,10 @@ without loss {K} ->: K / K = 1%AS. by move=> IH_K; apply: galoisS (IH_K _ (erefl _)); rewrite sub1v subvf. apply/splitting_galoisField; pose finL := FinFieldExtType L. exists ('X^#|finL| - 'X); split; first by rewrite rpredB 1?rpredX ?polyOverX. - rewrite (finField_genPoly finL) -big_filter. + rewrite (finField_genPoly finL) -big_enum /=. by rewrite separable_prod_XsubC ?(enum_uniq finL). -exists (enum finL); first by rewrite enumT (finField_genPoly finL) eqpxx. +exists (enum finL). + by rewrite (@big_enum _ _ _ _ finL) (finField_genPoly finL) eqpxx. by apply/vspaceP=> x; rewrite memvf seqv_sub_adjoin ?(mem_enum finL). Qed. @@ -390,7 +391,7 @@ have idfP x: reflect (f x = x) (x \in 1%VS). rewrite /q rmorphB /= map_polyXn map_polyX. by rewrite rootE !(hornerE, hornerXn) [x ^+ _]xFx subrr. have{q} ->: q = \prod_(z <- [seq b%:A | b : F]) ('X - z%:P). - rewrite /q finField_genPoly rmorph_prod big_map enumT. + rewrite /q finField_genPoly rmorph_prod big_image /=. by apply: eq_bigr => b _; rewrite rmorphB /= map_polyX map_polyC. by rewrite root_prod_XsubC => /mapP[a]; exists a. have fM: rmorphism f. diff --git a/mathcomp/field/galois.v b/mathcomp/field/galois.v index 4aaef57..72cd0df 100644 --- a/mathcomp/field/galois.v +++ b/mathcomp/field/galois.v @@ -448,14 +448,15 @@ pose mkf (z : L) := 'X - z%:P. exists (\prod_i \prod_(j < \dim {:L} | j < size (r i)) mkf (r i)`_j). apply: rpred_prod => i _; rewrite big_ord_narrow /= /r; case: sigW => rs /=. by rewrite (big_nth 0) big_mkord => /eqP <- {rs}; apply: minPolyOver. -rewrite pair_big_dep /= -big_filter filter_index_enum -(big_map _ xpredT mkf). +rewrite pair_big_dep /= -big_filter -(big_map _ xpredT mkf). set rF := map _ _; exists rF; first exact: eqpxx. apply/eqP; rewrite eqEsubv subvf -(span_basis (vbasisP {:L})). apply/span_subvP=> _ /tnthP[i ->]; set x := tnth _ i. have /tnthP[j ->]: x \in in_tuple (r i). by rewrite -root_prod_XsubC /r; case: sigW => _ /=/eqP<-; apply: root_minPoly. -apply/seqv_sub_adjoin/imageP; rewrite (tnth_nth 0) /in_mem/=. -by exists (i, widen_ord (sz_r i) j) => /=. +apply/seqv_sub_adjoin/mapP; rewrite (tnth_nth 0). +exists (i, widen_ord (sz_r i) j) => //. +by rewrite mem_filter /= ltn_ord mem_index_enum. Qed. Fact regular_splittingAxiom F : SplittingField.axiom (regular_fieldExtType F). |
