diff options
| author | Cyril Cohen | 2017-11-23 16:33:36 +0100 |
|---|---|---|
| committer | Cyril Cohen | 2018-02-06 13:54:37 +0100 |
| commit | fafd4dac5315e1d4e071b0044a50a16360b31964 (patch) | |
| tree | 5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/field/separable.v | |
| parent | 835467324db450c8fb8971e477cc4d82fa3e861b (diff) | |
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/field/separable.v')
| -rw-r--r-- | mathcomp/field/separable.v | 14 |
1 files changed, 7 insertions, 7 deletions
diff --git a/mathcomp/field/separable.v b/mathcomp/field/separable.v index 6178c01..c3f3ebb 100644 --- a/mathcomp/field/separable.v +++ b/mathcomp/field/separable.v @@ -71,13 +71,13 @@ apply: (iffP idP) => [sep_p | [sq'p nz_der1p]]. split=> [u v | u u_dv_p]; last first. apply: contraTneq => u'0; rewrite -leqNgt -(eqnP sep_p). rewrite dvdp_leq -?size_poly_eq0 ?(eqnP sep_p) // dvdp_gcd u_dv_p. - have /dvdp_scaler <-: lead_coef u ^+ scalp p u != 0 by rewrite lcn_neq0. + have /dvdp_scaler <-: lead_coef u ^+ scalp p u != 0 by rewrite lcn_neq0. by rewrite -derivZ -Pdiv.Idomain.divpK //= derivM u'0 mulr0 addr0 dvdp_mull. rewrite Pdiv.Idomain.dvdp_eq mulrCA mulrA; set c := _ ^+ _ => /eqP Dcp. have nz_c: c != 0 by rewrite lcn_neq0. move: sep_p; rewrite coprimep_sym -[separable _](coprimep_scalel _ _ nz_c). rewrite -(coprimep_scaler _ _ nz_c) -derivZ Dcp derivM coprimep_mull. - by rewrite coprimep_addl_mul !coprimep_mulr -andbA => /and4P[]. + by rewrite coprimep_addl_mul !coprimep_mulr -andbA => /and4P[]. rewrite /separable coprimep_def eqn_leq size_poly_gt0; set g := gcdp _ _. have nz_g: g != 0. rewrite -dvd0p dvdp_gcd -(mulr0 0); apply/nandP; left. @@ -217,7 +217,7 @@ pose kappa' := inj_subfx iota z r1. have /eq_map_poly Diota: kappa \o kappa' =1 iota. by move=> w; rewrite /kappa /= subfx_inj_eval // map_polyC hornerC. suffices [y3]: exists y3, y = kappa y3. - have [q3 ->] := subfxE y3; rewrite /kappa subfx_inj_eval // => Dy. + have [q3 ->] := subfxE y3; rewrite /kappa subfx_inj_eval // => Dy. split; [exists (t *: q3 - 'X) | by exists q3]. by rewrite rmorphB linearZ /= map_polyX !hornerE -Dy opprB addrC addrNK. pose p0 := p ^ iota \Po (iota t *: 'X - z%:P). @@ -244,7 +244,7 @@ have{p0} [p3 ->]: exists p3, p0 = p3 ^ kappa. rewrite -Diota map_poly_comp -gcdp_map /= -/kappa. move: (gcdp _ _) => r3 /eqpf_eq[c nz_c Dr3]. exists (- (r3`_0 / r3`_1)); rewrite [kappa _]rmorphN fmorph_div -!coef_map Dr3. -by rewrite !coefZ polyseqXsubC mulr1 mulrC mulKf ?opprK. +by rewrite !coefZ polyseqXsubC mulr1 mulrC mulKf ?opprK. Qed. Lemma char0_PET (q : {poly F}) : @@ -534,7 +534,7 @@ have Dder: Derivation <<K; x>> D. apply/allP=> u /vbasis_mem Kx_u; apply/allP=> v /vbasis_mem Kx_v. rewrite !lfunE /= -{-2}(Fadjoin_poly_eq Kx_u) -{-3}(Fadjoin_poly_eq Kx_v). rewrite -!hornerM -hornerD -derivM. - rewrite Fadjoin_poly_mod ?rpredM ?Fadjoin_polyOver //. + rewrite Fadjoin_poly_mod ?rpredM ?Fadjoin_polyOver //. rewrite {2}(divp_eq (_ * _) (minPoly K x)) derivD derivM pKx'_0 mulr0 addr0. by rewrite hornerD hornerM minPolyxx mulr0 add0r. have{Dder DK_0}: x \in lker D by apply: subvP Kx_x; apply: derKx_0. @@ -608,7 +608,7 @@ Lemma charf_p_separable K x e p : p \in [char L] -> separable_element K x = (x \in <<K; x ^+ (p ^ e.+1)>>%VS). Proof. move=> charLp; apply/idP/idP=> [sepKx | /Fadjoin_poly_eq]; last first. - set m := p ^ _;set f := Fadjoin_poly K _ x => Dx; apply/separable_elementP. + set m := p ^ _; set f := Fadjoin_poly K _ x => Dx; apply/separable_elementP. have mL0: m%:R = 0 :> L by apply/eqP; rewrite -(dvdn_charf charLp) dvdn_exp. exists ('X - (f \Po 'X^m)); split. - by rewrite rpredB ?polyOver_comp ?rpredX ?polyOverX ?Fadjoin_polyOver. @@ -672,7 +672,7 @@ Lemma separable_inseparable_element K x : Proof. rewrite /purely_inseparable_element; case: ex_minnP => [[|m]] //=. rewrite subfield_closed; case: m => /= [-> //| m _ /(_ 1%N)/implyP/= insepKx]. -by rewrite (negPf insepKx) (contraNF (@base_separable K x) insepKx). +by rewrite (negPf insepKx) (contraNF (@base_separable K x) insepKx). Qed. Lemma base_inseparable K x : x \in K -> purely_inseparable_element K x. |
