aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/field/countalg.v
diff options
context:
space:
mode:
authorEnrico Tassi2015-03-09 11:07:53 +0100
committerEnrico Tassi2015-03-09 11:24:38 +0100
commitfc84c27eac260dffd8f2fb1cb56d599f1e3486d9 (patch)
treec16205f1637c80833a4c4598993c29fa0fd8c373 /mathcomp/field/countalg.v
Initial commit
Diffstat (limited to 'mathcomp/field/countalg.v')
-rw-r--r--mathcomp/field/countalg.v1107
1 files changed, 1107 insertions, 0 deletions
diff --git a/mathcomp/field/countalg.v b/mathcomp/field/countalg.v
new file mode 100644
index 0000000..68dd16f
--- /dev/null
+++ b/mathcomp/field/countalg.v
@@ -0,0 +1,1107 @@
+(* (c) Copyright Microsoft Corporation and Inria. All rights reserved. *)
+Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice fintype.
+Require Import bigop ssralg finalg zmodp matrix mxalgebra.
+Require Import poly polydiv mxpoly generic_quotient ring_quotient closed_field.
+Require Import ssrint rat.
+
+(*****************************************************************************)
+(* This file clones part of ssralg hierachy for countable types; it does not *)
+(* cover the left module / algebra interfaces, providing only *)
+(* countZmodType == countable zmodType interface. *)
+(* countRingType == countable ringType interface. *)
+(* countComRingType == countable comRingType interface. *)
+(* countUnitRingType == countable unitRingType interface. *)
+(* countComUnitRingType == countable comUnitRingType interface. *)
+(* countIdomainType == countable idomainType interface. *)
+(* countFieldType == countable fieldType interface. *)
+(* countDecFieldType == countable decFieldType interface. *)
+(* countClosedFieldType == countable closedFieldType interface. *)
+(* The interface cloning syntax is extended to these structures *)
+(* [countZmodType of M] == countZmodType structure for an M that has both *)
+(* zmodType and countType structures. *)
+(* ... etc *)
+(* This file provides constructions for both simple extension and algebraic *)
+(* closure of countable fields. *)
+(*****************************************************************************)
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+Unset Printing Implicit Defensive.
+
+Local Open Scope ring_scope.
+Import GRing.Theory CodeSeq.
+
+Module CountRing.
+
+Local Notation mixin_of T := (Countable.mixin_of T).
+
+Section Generic.
+
+(* Implicits *)
+Variables (type base_type : Type) (class_of base_of : Type -> Type).
+Variable base_sort : base_type -> Type.
+
+(* Explicits *)
+Variable Pack : forall T, class_of T -> Type -> type.
+Variable Class : forall T, base_of T -> mixin_of T -> class_of T.
+Variable base_class : forall bT, base_of (base_sort bT).
+
+Definition gen_pack T :=
+ fun bT b & phant_id (base_class bT) b =>
+ fun fT c m & phant_id (Countable.class fT) (Countable.Class c m) =>
+ Pack (@Class T b m) T.
+
+End Generic.
+
+Implicit Arguments gen_pack [type base_type class_of base_of base_sort].
+Local Notation cnt_ c := (@Countable.Class _ c c).
+Local Notation do_pack pack T := (pack T _ _ id _ _ _ id).
+Import GRing.Theory.
+
+Module Zmodule.
+
+Section ClassDef.
+
+Record class_of M :=
+ Class { base : GRing.Zmodule.class_of M; mixin : mixin_of M }.
+Local Coercion base : class_of >-> GRing.Zmodule.class_of.
+Local Coercion mixin : class_of >-> mixin_of.
+
+Structure type := Pack {sort; _ : class_of sort; _ : Type}.
+Local Coercion sort : type >-> Sortclass.
+Definition pack := gen_pack Pack Class GRing.Zmodule.class.
+Variable cT : type.
+Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
+Let xT := let: Pack T _ _ := cT in T.
+Notation xclass := (class : class_of xT).
+
+Definition eqType := @Equality.Pack cT xclass xT.
+Definition choiceType := @Choice.Pack cT xclass xT.
+Definition countType := @Countable.Pack cT (cnt_ xclass) xT.
+Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
+
+Definition join_countType := @Countable.Pack zmodType (cnt_ xclass) xT.
+
+End ClassDef.
+
+Module Exports.
+Coercion base : class_of >-> GRing.Zmodule.class_of.
+Coercion mixin : class_of >-> mixin_of.
+Coercion sort : type >-> Sortclass.
+Bind Scope ring_scope with sort.
+Coercion eqType : type >-> Equality.type.
+Canonical eqType.
+Coercion choiceType : type >-> Choice.type.
+Canonical choiceType.
+Coercion countType : type >-> Countable.type.
+Canonical countType.
+Coercion zmodType : type >-> GRing.Zmodule.type.
+Canonical zmodType.
+Canonical join_countType.
+Notation countZmodType := type.
+Notation "[ 'countZmodType' 'of' T ]" := (do_pack pack T)
+ (at level 0, format "[ 'countZmodType' 'of' T ]") : form_scope.
+End Exports.
+
+End Zmodule.
+Import Zmodule.Exports.
+
+Module Ring.
+
+Section ClassDef.
+
+Record class_of R := Class { base : GRing.Ring.class_of R; mixin : mixin_of R }.
+Definition base2 R (c : class_of R) := Zmodule.Class (base c) (mixin c).
+Local Coercion base : class_of >-> GRing.Ring.class_of.
+Local Coercion base2 : class_of >-> Zmodule.class_of.
+
+Structure type := Pack {sort; _ : class_of sort; _ : Type}.
+Local Coercion sort : type >-> Sortclass.
+Definition pack := gen_pack Pack Class GRing.Ring.class.
+Variable cT : type.
+Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
+Let xT := let: Pack T _ _ := cT in T.
+Notation xclass := (class : class_of xT).
+
+Definition eqType := @Equality.Pack cT xclass xT.
+Definition choiceType := @Choice.Pack cT xclass xT.
+Definition countType := @Countable.Pack cT (cnt_ xclass) xT.
+Definition zmodType := @GRing.Zmodule.Pack cT xclass cT.
+Definition countZmodType := @Zmodule.Pack cT xclass xT.
+Definition ringType := @GRing.Ring.Pack cT xclass xT.
+Definition join_countType := @Countable.Pack ringType (cnt_ xclass) xT.
+Definition join_countZmodType := @Zmodule.Pack ringType xclass xT.
+
+End ClassDef.
+
+Module Import Exports.
+Coercion base : class_of >-> GRing.Ring.class_of.
+Coercion base2 : class_of >-> Zmodule.class_of.
+Coercion sort : type >-> Sortclass.
+Bind Scope ring_scope with sort.
+Coercion eqType : type >-> Equality.type.
+Canonical eqType.
+Coercion choiceType : type >-> Choice.type.
+Canonical choiceType.
+Coercion countType : type >-> Countable.type.
+Canonical countType.
+Coercion zmodType : type >-> GRing.Zmodule.type.
+Canonical zmodType.
+Coercion countZmodType : type >-> Zmodule.type.
+Canonical countZmodType.
+Coercion ringType : type >-> GRing.Ring.type.
+Canonical ringType.
+Canonical join_countType.
+Canonical join_countZmodType.
+Notation countRingType := type.
+Notation "[ 'countRingType' 'of' T ]" := (do_pack pack T)
+ (at level 0, format "[ 'countRingType' 'of' T ]") : form_scope.
+End Exports.
+
+End Ring.
+Import Ring.Exports.
+
+Module ComRing.
+
+Section ClassDef.
+
+Record class_of R :=
+ Class { base : GRing.ComRing.class_of R; mixin : mixin_of R }.
+Definition base2 R (c : class_of R) := Ring.Class (base c) (mixin c).
+Local Coercion base : class_of >-> GRing.ComRing.class_of.
+Local Coercion base2 : class_of >-> Ring.class_of.
+
+Structure type := Pack {sort; _ : class_of sort; _ : Type}.
+Local Coercion sort : type >-> Sortclass.
+Definition pack := gen_pack Pack Class GRing.ComRing.class.
+Variable cT : type.
+Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
+Let xT := let: Pack T _ _ := cT in T.
+Notation xclass := (class : class_of xT).
+
+Definition eqType := @Equality.Pack cT xclass xT.
+Definition choiceType := @Choice.Pack cT xclass xT.
+Definition countType := @Countable.Pack cT (cnt_ xclass) xT.
+Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
+Definition countZmodType := @Zmodule.Pack cT xclass xT.
+Definition ringType := @GRing.Ring.Pack cT xclass xT.
+Definition countRingType := @Ring.Pack cT xclass xT.
+Definition comRingType := @GRing.ComRing.Pack cT xclass xT.
+Definition join_countType := @Countable.Pack comRingType (cnt_ xclass) xT.
+Definition join_countZmodType := @Zmodule.Pack comRingType xclass xT.
+Definition join_countRingType := @Ring.Pack comRingType xclass xT.
+
+End ClassDef.
+
+Module Exports.
+Coercion base : class_of >-> GRing.ComRing.class_of.
+Coercion base2 : class_of >-> Ring.class_of.
+Coercion sort : type >-> Sortclass.
+Bind Scope ring_scope with sort.
+Coercion eqType : type >-> Equality.type.
+Canonical eqType.
+Coercion choiceType : type >-> Choice.type.
+Canonical choiceType.
+Coercion countType : type >-> Countable.type.
+Canonical countType.
+Coercion zmodType : type >-> GRing.Zmodule.type.
+Canonical zmodType.
+Coercion countZmodType : type >-> Zmodule.type.
+Canonical countZmodType.
+Coercion ringType : type >-> GRing.Ring.type.
+Canonical ringType.
+Coercion countRingType : type >-> Ring.type.
+Canonical countRingType.
+Coercion comRingType : type >-> GRing.ComRing.type.
+Canonical comRingType.
+Canonical join_countType.
+Canonical join_countZmodType.
+Canonical join_countRingType.
+Notation countComRingType := CountRing.ComRing.type.
+Notation "[ 'countComRingType' 'of' T ]" := (do_pack pack T)
+ (at level 0, format "[ 'countComRingType' 'of' T ]") : form_scope.
+End Exports.
+
+End ComRing.
+Import ComRing.Exports.
+
+Module UnitRing.
+
+Section ClassDef.
+
+Record class_of R :=
+ Class { base : GRing.UnitRing.class_of R; mixin : mixin_of R }.
+Definition base2 R (c : class_of R) := Ring.Class (base c) (mixin c).
+Local Coercion base : class_of >-> GRing.UnitRing.class_of.
+Local Coercion base2 : class_of >-> Ring.class_of.
+
+Structure type := Pack {sort; _ : class_of sort; _ : Type}.
+Local Coercion sort : type >-> Sortclass.
+Definition pack := gen_pack Pack Class GRing.UnitRing.class.
+Variable cT : type.
+Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
+Let xT := let: Pack T _ _ := cT in T.
+Notation xclass := (class : class_of xT).
+
+Definition eqType := @Equality.Pack cT xclass xT.
+Definition choiceType := @Choice.Pack cT xclass xT.
+Definition countType := @Countable.Pack cT (cnt_ xclass) xT.
+Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
+Definition countZmodType := @Zmodule.Pack cT xclass xT.
+Definition ringType := @GRing.Ring.Pack cT xclass xT.
+Definition countRingType := @Ring.Pack cT xclass xT.
+Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT.
+
+Definition join_countType := @Countable.Pack unitRingType (cnt_ xclass) xT.
+Definition join_countZmodType := @Zmodule.Pack unitRingType xclass xT.
+Definition join_countRingType := @Ring.Pack unitRingType xclass xT.
+
+End ClassDef.
+
+Module Exports.
+Coercion base : class_of >-> GRing.UnitRing.class_of.
+Coercion base2 : class_of >-> Ring.class_of.
+Coercion sort : type >-> Sortclass.
+Bind Scope ring_scope with sort.
+Coercion eqType : type >-> Equality.type.
+Canonical eqType.
+Coercion choiceType : type >-> Choice.type.
+Canonical choiceType.
+Coercion countType : type >-> Countable.type.
+Canonical countType.
+Coercion zmodType : type >-> GRing.Zmodule.type.
+Canonical zmodType.
+Coercion countZmodType : type >-> Zmodule.type.
+Canonical countZmodType.
+Coercion ringType : type >-> GRing.Ring.type.
+Canonical ringType.
+Coercion countRingType : type >-> Ring.type.
+Canonical countRingType.
+Coercion unitRingType : type >-> GRing.UnitRing.type.
+Canonical unitRingType.
+Canonical join_countType.
+Canonical join_countZmodType.
+Canonical join_countRingType.
+Notation countUnitRingType := CountRing.UnitRing.type.
+Notation "[ 'countUnitRingType' 'of' T ]" := (do_pack pack T)
+ (at level 0, format "[ 'countUnitRingType' 'of' T ]") : form_scope.
+End Exports.
+
+End UnitRing.
+Import UnitRing.Exports.
+
+Module ComUnitRing.
+
+Section ClassDef.
+
+Record class_of R :=
+ Class { base : GRing.ComUnitRing.class_of R; mixin : mixin_of R }.
+Definition base2 R (c : class_of R) := ComRing.Class (base c) (mixin c).
+Definition base3 R (c : class_of R) := @UnitRing.Class R (base c) (mixin c).
+Local Coercion base : class_of >-> GRing.ComUnitRing.class_of.
+Local Coercion base2 : class_of >-> ComRing.class_of.
+Local Coercion base3 : class_of >-> UnitRing.class_of.
+
+Structure type := Pack {sort; _ : class_of sort; _ : Type}.
+Local Coercion sort : type >-> Sortclass.
+Definition pack := gen_pack Pack Class GRing.ComUnitRing.class.
+Variable cT : type.
+Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
+Let xT := let: Pack T _ _ := cT in T.
+Notation xclass := (class : class_of xT).
+
+Definition eqType := @Equality.Pack cT xclass xT.
+Definition choiceType := @Choice.Pack cT xclass xT.
+Definition countType := @Countable.Pack cT (cnt_ xclass) xT.
+Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
+Definition countZmodType := @Zmodule.Pack cT xclass xT.
+Definition ringType := @GRing.Ring.Pack cT xclass xT.
+Definition countRingType := @Ring.Pack cT xclass xT.
+Definition comRingType := @GRing.ComRing.Pack cT xclass xT.
+Definition countComRingType := @ComRing.Pack cT xclass xT.
+Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT.
+Definition countUnitRingType := @UnitRing.Pack cT xclass xT.
+Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass xT.
+
+Definition join_countType := @Countable.Pack comUnitRingType (cnt_ xclass) xT.
+Definition join_countZmodType := @Zmodule.Pack comUnitRingType xclass xT.
+Definition join_countRingType := @Ring.Pack comUnitRingType xclass xT.
+Definition join_countComRingType := @ComRing.Pack comUnitRingType xclass xT.
+Definition join_countUnitRingType := @UnitRing.Pack comUnitRingType xclass xT.
+Definition ujoin_countComRingType := @ComRing.Pack unitRingType xclass xT.
+Definition cjoin_countUnitRingType := @UnitRing.Pack comRingType xclass xT.
+Definition ccjoin_countUnitRingType :=
+ @UnitRing.Pack countComRingType xclass xT.
+
+End ClassDef.
+
+Module Exports.
+Coercion base : class_of >-> GRing.ComUnitRing.class_of.
+Coercion base2 : class_of >-> ComRing.class_of.
+Coercion base3 : class_of >-> UnitRing.class_of.
+Coercion sort : type >-> Sortclass.
+Bind Scope ring_scope with sort.
+Coercion eqType : type >-> Equality.type.
+Canonical eqType.
+Coercion choiceType : type >-> Choice.type.
+Canonical choiceType.
+Coercion countType : type >-> Countable.type.
+Canonical countType.
+Coercion zmodType : type >-> GRing.Zmodule.type.
+Canonical zmodType.
+Coercion countZmodType : type >-> Zmodule.type.
+Canonical countZmodType.
+Coercion ringType : type >-> GRing.Ring.type.
+Canonical ringType.
+Coercion countRingType : type >-> Ring.type.
+Canonical countRingType.
+Coercion comRingType : type >-> GRing.ComRing.type.
+Canonical comRingType.
+Coercion countComRingType : type >-> ComRing.type.
+Canonical countComRingType.
+Coercion unitRingType : type >-> GRing.UnitRing.type.
+Canonical unitRingType.
+Coercion countUnitRingType : type >-> UnitRing.type.
+Canonical countUnitRingType.
+Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
+Canonical comUnitRingType.
+Canonical join_countType.
+Canonical join_countZmodType.
+Canonical join_countRingType.
+Canonical join_countComRingType.
+Canonical join_countUnitRingType.
+Canonical ujoin_countComRingType.
+Canonical cjoin_countUnitRingType.
+Canonical ccjoin_countUnitRingType.
+Notation countComUnitRingType := CountRing.ComUnitRing.type.
+Notation "[ 'countComUnitRingType' 'of' T ]" := (do_pack pack T)
+ (at level 0, format "[ 'countComUnitRingType' 'of' T ]") : form_scope.
+End Exports.
+
+End ComUnitRing.
+Import ComUnitRing.Exports.
+
+Module IntegralDomain.
+
+Section ClassDef.
+
+Record class_of R :=
+ Class { base : GRing.IntegralDomain.class_of R; mixin : mixin_of R }.
+Definition base2 R (c : class_of R) := ComUnitRing.Class (base c) (mixin c).
+Local Coercion base : class_of >-> GRing.IntegralDomain.class_of.
+Local Coercion base2 : class_of >-> ComUnitRing.class_of.
+
+Structure type := Pack {sort; _ : class_of sort; _ : Type}.
+Local Coercion sort : type >-> Sortclass.
+Definition pack := gen_pack Pack Class GRing.IntegralDomain.class.
+Variable cT : type.
+Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
+Let xT := let: Pack T _ _ := cT in T.
+Notation xclass := (class : class_of xT).
+
+Definition eqType := @Equality.Pack cT xclass xT.
+Definition choiceType := @Choice.Pack cT xclass xT.
+Definition countType := @Countable.Pack cT (cnt_ xclass) xT.
+Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
+Definition countZmodType := @Zmodule.Pack cT xclass xT.
+Definition ringType := @GRing.Ring.Pack cT xclass xT.
+Definition countRingType := @Ring.Pack cT xclass xT.
+Definition comRingType := @GRing.ComRing.Pack cT xclass xT.
+Definition countComRingType := @ComRing.Pack cT xclass xT.
+Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT.
+Definition countUnitRingType := @UnitRing.Pack cT xclass xT.
+Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass xT.
+Definition countComUnitRingType := @ComUnitRing.Pack cT xclass xT.
+Definition idomainType := @GRing.IntegralDomain.Pack cT xclass xT.
+
+Definition join_countType := @Countable.Pack idomainType (cnt_ xclass) xT.
+Definition join_countZmodType := @Zmodule.Pack idomainType xclass xT.
+Definition join_countRingType := @Ring.Pack idomainType xclass xT.
+Definition join_countUnitRingType := @UnitRing.Pack idomainType xclass xT.
+Definition join_countComRingType := @ComRing.Pack idomainType xclass xT.
+Definition join_countComUnitRingType := @ComUnitRing.Pack idomainType xclass xT.
+
+End ClassDef.
+
+Module Exports.
+Coercion base : class_of >-> GRing.IntegralDomain.class_of.
+Coercion base2 : class_of >-> ComUnitRing.class_of.
+Coercion sort : type >-> Sortclass.
+Bind Scope ring_scope with sort.
+Coercion eqType : type >-> Equality.type.
+Canonical eqType.
+Coercion choiceType : type >-> Choice.type.
+Canonical choiceType.
+Coercion countType : type >-> Countable.type.
+Canonical countType.
+Coercion zmodType : type >-> GRing.Zmodule.type.
+Canonical zmodType.
+Coercion countZmodType : type >-> Zmodule.type.
+Canonical countZmodType.
+Coercion ringType : type >-> GRing.Ring.type.
+Canonical ringType.
+Coercion countRingType : type >-> Ring.type.
+Canonical countRingType.
+Coercion comRingType : type >-> GRing.ComRing.type.
+Canonical comRingType.
+Coercion countComRingType : type >-> ComRing.type.
+Canonical countComRingType.
+Coercion unitRingType : type >-> GRing.UnitRing.type.
+Canonical unitRingType.
+Coercion countUnitRingType : type >-> UnitRing.type.
+Canonical countUnitRingType.
+Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
+Canonical comUnitRingType.
+Coercion countComUnitRingType : type >-> ComUnitRing.type.
+Canonical countComUnitRingType.
+Coercion idomainType : type >-> GRing.IntegralDomain.type.
+Canonical idomainType.
+Canonical join_countType.
+Canonical join_countZmodType.
+Canonical join_countRingType.
+Canonical join_countComRingType.
+Canonical join_countUnitRingType.
+Canonical join_countComUnitRingType.
+Notation countIdomainType := CountRing.IntegralDomain.type.
+Notation "[ 'countIdomainType' 'of' T ]" := (do_pack pack T)
+ (at level 0, format "[ 'countIdomainType' 'of' T ]") : form_scope.
+End Exports.
+
+End IntegralDomain.
+Import IntegralDomain.Exports.
+
+Module Field.
+
+Section ClassDef.
+
+Record class_of R :=
+ Class { base : GRing.Field.class_of R; mixin : mixin_of R }.
+Definition base2 R (c : class_of R) := IntegralDomain.Class (base c) (mixin c).
+Local Coercion base : class_of >-> GRing.Field.class_of.
+Local Coercion base2 : class_of >-> IntegralDomain.class_of.
+
+Structure type := Pack {sort; _ : class_of sort; _ : Type}.
+Local Coercion sort : type >-> Sortclass.
+Definition pack := gen_pack Pack Class GRing.Field.class.
+Variable cT : type.
+Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
+Let xT := let: Pack T _ _ := cT in T.
+Notation xclass := (class : class_of xT).
+
+Definition eqType := @Equality.Pack cT xclass xT.
+Definition choiceType := @Choice.Pack cT xclass xT.
+Definition countType := @Countable.Pack cT (cnt_ xclass) xT.
+Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
+Definition countZmodType := @Zmodule.Pack cT xclass xT.
+Definition ringType := @GRing.Ring.Pack cT xclass xT.
+Definition countRingType := @Ring.Pack cT xclass xT.
+Definition comRingType := @GRing.ComRing.Pack cT xclass xT.
+Definition countComRingType := @ComRing.Pack cT xclass xT.
+Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT.
+Definition countUnitRingType := @UnitRing.Pack cT xclass xT.
+Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass xT.
+Definition countComUnitRingType := @ComUnitRing.Pack cT xclass xT.
+Definition idomainType := @GRing.IntegralDomain.Pack cT xclass xT.
+Definition countIdomainType := @IntegralDomain.Pack cT xclass xT.
+Definition fieldType := @GRing.Field.Pack cT xclass xT.
+
+Definition join_countType := @Countable.Pack fieldType (cnt_ xclass) xT.
+Definition join_countZmodType := @Zmodule.Pack fieldType xclass xT.
+Definition join_countRingType := @Ring.Pack fieldType xclass xT.
+Definition join_countUnitRingType := @UnitRing.Pack fieldType xclass xT.
+Definition join_countComRingType := @ComRing.Pack fieldType xclass xT.
+Definition join_countComUnitRingType := @ComUnitRing.Pack fieldType xclass xT.
+Definition join_countIdomainType := @IntegralDomain.Pack fieldType xclass xT.
+
+End ClassDef.
+
+Module Exports.
+Coercion base : class_of >-> GRing.Field.class_of.
+Coercion base2 : class_of >-> IntegralDomain.class_of.
+Coercion sort : type >-> Sortclass.
+Bind Scope ring_scope with sort.
+Coercion eqType : type >-> Equality.type.
+Canonical eqType.
+Coercion choiceType : type >-> Choice.type.
+Canonical choiceType.
+Coercion countType : type >-> Countable.type.
+Canonical countType.
+Coercion zmodType : type >-> GRing.Zmodule.type.
+Canonical zmodType.
+Coercion countZmodType : type >-> Zmodule.type.
+Canonical countZmodType.
+Coercion ringType : type >-> GRing.Ring.type.
+Canonical ringType.
+Coercion countRingType : type >-> Ring.type.
+Canonical countRingType.
+Coercion comRingType : type >-> GRing.ComRing.type.
+Canonical comRingType.
+Coercion countComRingType : type >-> ComRing.type.
+Canonical countComRingType.
+Coercion unitRingType : type >-> GRing.UnitRing.type.
+Canonical unitRingType.
+Coercion countUnitRingType : type >-> UnitRing.type.
+Canonical countUnitRingType.
+Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
+Canonical comUnitRingType.
+Coercion countComUnitRingType : type >-> ComUnitRing.type.
+Canonical countComUnitRingType.
+Coercion idomainType : type >-> GRing.IntegralDomain.type.
+Canonical idomainType.
+Coercion countIdomainType : type >-> IntegralDomain.type.
+Canonical countIdomainType.
+Coercion fieldType : type >-> GRing.Field.type.
+Canonical fieldType.
+Canonical join_countType.
+Canonical join_countZmodType.
+Canonical join_countRingType.
+Canonical join_countComRingType.
+Canonical join_countUnitRingType.
+Canonical join_countComUnitRingType.
+Canonical join_countIdomainType.
+Notation countFieldType := CountRing.Field.type.
+Notation "[ 'countFieldType' 'of' T ]" := (do_pack pack T)
+ (at level 0, format "[ 'countFieldType' 'of' T ]") : form_scope.
+End Exports.
+
+End Field.
+Import Field.Exports.
+
+Module DecidableField.
+
+Section ClassDef.
+
+Record class_of R :=
+ Class { base : GRing.DecidableField.class_of R; mixin : mixin_of R }.
+Definition base2 R (c : class_of R) := Field.Class (base c) (mixin c).
+Local Coercion base : class_of >-> GRing.DecidableField.class_of.
+Local Coercion base2 : class_of >-> Field.class_of.
+
+Structure type := Pack {sort; _ : class_of sort; _ : Type}.
+Local Coercion sort : type >-> Sortclass.
+Definition pack := gen_pack Pack Class GRing.DecidableField.class.
+Variable cT : type.
+Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
+Let xT := let: Pack T _ _ := cT in T.
+Notation xclass := (class : class_of xT).
+
+Definition eqType := @Equality.Pack cT xclass xT.
+Definition choiceType := @Choice.Pack cT xclass xT.
+Definition countType := @Countable.Pack cT (cnt_ xclass) xT.
+Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
+Definition countZmodType := @Zmodule.Pack cT xclass xT.
+Definition ringType := @GRing.Ring.Pack cT xclass xT.
+Definition countRingType := @Ring.Pack cT xclass xT.
+Definition comRingType := @GRing.ComRing.Pack cT xclass xT.
+Definition countComRingType := @ComRing.Pack cT xclass xT.
+Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT.
+Definition countUnitRingType := @UnitRing.Pack cT xclass xT.
+Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass xT.
+Definition countComUnitRingType := @ComUnitRing.Pack cT xclass xT.
+Definition idomainType := @GRing.IntegralDomain.Pack cT xclass xT.
+Definition countIdomainType := @IntegralDomain.Pack cT xclass xT.
+Definition fieldType := @GRing.Field.Pack cT xclass xT.
+Definition countFieldType := @Field.Pack cT xclass xT.
+Definition decFieldType := @GRing.DecidableField.Pack cT xclass xT.
+
+Definition join_countType := @Countable.Pack decFieldType (cnt_ xclass) xT.
+Definition join_countZmodType := @Zmodule.Pack decFieldType xclass xT.
+Definition join_countRingType := @Ring.Pack decFieldType xclass xT.
+Definition join_countUnitRingType := @UnitRing.Pack decFieldType xclass xT.
+Definition join_countComRingType := @ComRing.Pack decFieldType xclass xT.
+Definition join_countComUnitRingType :=
+ @ComUnitRing.Pack decFieldType xclass xT.
+Definition join_countIdomainType := @IntegralDomain.Pack decFieldType xclass xT.
+Definition join_countFieldType := @Field.Pack decFieldType xclass xT.
+
+End ClassDef.
+
+Module Exports.
+Coercion base : class_of >-> GRing.DecidableField.class_of.
+Coercion base2 : class_of >-> Field.class_of.
+Coercion sort : type >-> Sortclass.
+Bind Scope ring_scope with sort.
+Coercion eqType : type >-> Equality.type.
+Canonical eqType.
+Coercion choiceType : type >-> Choice.type.
+Canonical choiceType.
+Coercion countType : type >-> Countable.type.
+Canonical countType.
+Coercion zmodType : type >-> GRing.Zmodule.type.
+Canonical zmodType.
+Coercion countZmodType : type >-> Zmodule.type.
+Canonical countZmodType.
+Coercion ringType : type >-> GRing.Ring.type.
+Canonical ringType.
+Coercion countRingType : type >-> Ring.type.
+Canonical countRingType.
+Coercion comRingType : type >-> GRing.ComRing.type.
+Canonical comRingType.
+Coercion countComRingType : type >-> ComRing.type.
+Canonical countComRingType.
+Coercion unitRingType : type >-> GRing.UnitRing.type.
+Canonical unitRingType.
+Coercion countUnitRingType : type >-> UnitRing.type.
+Canonical countUnitRingType.
+Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
+Canonical comUnitRingType.
+Coercion countComUnitRingType : type >-> ComUnitRing.type.
+Canonical countComUnitRingType.
+Coercion idomainType : type >-> GRing.IntegralDomain.type.
+Canonical idomainType.
+Coercion countIdomainType : type >-> IntegralDomain.type.
+Canonical countIdomainType.
+Coercion fieldType : type >-> GRing.Field.type.
+Canonical fieldType.
+Coercion countFieldType : type >-> Field.type.
+Canonical countFieldType.
+Coercion decFieldType : type >-> GRing.DecidableField.type.
+Canonical decFieldType.
+Canonical join_countType.
+Canonical join_countZmodType.
+Canonical join_countRingType.
+Canonical join_countComRingType.
+Canonical join_countUnitRingType.
+Canonical join_countComUnitRingType.
+Canonical join_countIdomainType.
+Canonical join_countFieldType.
+Notation countDecFieldType := CountRing.DecidableField.type.
+Notation "[ 'countDecFieldType' 'of' T ]" := (do_pack pack T)
+ (at level 0, format "[ 'countDecFieldType' 'of' T ]") : form_scope.
+End Exports.
+
+End DecidableField.
+Import DecidableField.Exports.
+
+Module ClosedField.
+
+Section ClassDef.
+
+Record class_of R :=
+ Class { base : GRing.ClosedField.class_of R; mixin : mixin_of R }.
+Definition base2 R (c : class_of R) := DecidableField.Class (base c) (mixin c).
+Local Coercion base : class_of >-> GRing.ClosedField.class_of.
+Local Coercion base2 : class_of >-> DecidableField.class_of.
+
+Structure type := Pack {sort; _ : class_of sort; _ : Type}.
+Local Coercion sort : type >-> Sortclass.
+Definition pack := gen_pack Pack Class GRing.ClosedField.class.
+Variable cT : type.
+Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
+Let xT := let: Pack T _ _ := cT in T.
+Notation xclass := (class : class_of xT).
+
+Definition eqType := @Equality.Pack cT xclass xT.
+Definition choiceType := @Choice.Pack cT xclass xT.
+Definition countType := @Countable.Pack cT (cnt_ xclass) xT.
+Definition zmodType := @GRing.Zmodule.Pack cT xclass xT.
+Definition countZmodType := @Zmodule.Pack cT xclass xT.
+Definition ringType := @GRing.Ring.Pack cT xclass xT.
+Definition countRingType := @Ring.Pack cT xclass xT.
+Definition comRingType := @GRing.ComRing.Pack cT xclass xT.
+Definition countComRingType := @ComRing.Pack cT xclass xT.
+Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT.
+Definition countUnitRingType := @UnitRing.Pack cT xclass xT.
+Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass xT.
+Definition countComUnitRingType := @ComUnitRing.Pack cT xclass xT.
+Definition idomainType := @GRing.IntegralDomain.Pack cT xclass xT.
+Definition countIdomainType := @IntegralDomain.Pack cT xclass xT.
+Definition fieldType := @GRing.Field.Pack cT xclass xT.
+Definition countFieldType := @Field.Pack cT xclass xT.
+Definition decFieldType := @GRing.DecidableField.Pack cT xclass xT.
+Definition countDecFieldType := @DecidableField.Pack cT xclass xT.
+Definition closedFieldType := @GRing.ClosedField.Pack cT xclass xT.
+
+Definition join_countType := @Countable.Pack closedFieldType (cnt_ xclass) xT.
+Definition join_countZmodType := @Zmodule.Pack closedFieldType xclass xT.
+Definition join_countRingType := @Ring.Pack closedFieldType xclass xT.
+Definition join_countUnitRingType := @UnitRing.Pack closedFieldType xclass xT.
+Definition join_countComRingType := @ComRing.Pack closedFieldType xclass xT.
+Definition join_countComUnitRingType :=
+ @ComUnitRing.Pack closedFieldType xclass xT.
+Definition join_countIdomainType :=
+ @IntegralDomain.Pack closedFieldType xclass xT.
+Definition join_countFieldType := @Field.Pack closedFieldType xclass xT.
+Definition join_countDecFieldType :=
+ @DecidableField.Pack closedFieldType xclass xT.
+
+End ClassDef.
+
+Module Exports.
+Coercion base : class_of >-> GRing.ClosedField.class_of.
+Coercion base2 : class_of >-> DecidableField.class_of.
+Coercion sort : type >-> Sortclass.
+Bind Scope ring_scope with sort.
+Coercion eqType : type >-> Equality.type.
+Canonical eqType.
+Coercion choiceType : type >-> Choice.type.
+Canonical choiceType.
+Coercion countType : type >-> Countable.type.
+Canonical countType.
+Coercion zmodType : type >-> GRing.Zmodule.type.
+Canonical zmodType.
+Coercion countZmodType : type >-> Zmodule.type.
+Canonical countZmodType.
+Coercion ringType : type >-> GRing.Ring.type.
+Canonical ringType.
+Coercion countRingType : type >-> Ring.type.
+Canonical countRingType.
+Coercion comRingType : type >-> GRing.ComRing.type.
+Canonical comRingType.
+Coercion countComRingType : type >-> ComRing.type.
+Canonical countComRingType.
+Coercion unitRingType : type >-> GRing.UnitRing.type.
+Canonical unitRingType.
+Coercion countUnitRingType : type >-> UnitRing.type.
+Canonical countUnitRingType.
+Coercion comUnitRingType : type >-> GRing.ComUnitRing.type.
+Canonical comUnitRingType.
+Coercion countComUnitRingType : type >-> ComUnitRing.type.
+Canonical countComUnitRingType.
+Coercion idomainType : type >-> GRing.IntegralDomain.type.
+Canonical idomainType.
+Coercion fieldType : type >-> GRing.Field.type.
+Canonical fieldType.
+Coercion countFieldType : type >-> Field.type.
+Canonical countFieldType.
+Coercion decFieldType : type >-> GRing.DecidableField.type.
+Canonical decFieldType.
+Coercion countDecFieldType : type >-> DecidableField.type.
+Canonical countDecFieldType.
+Coercion closedFieldType : type >-> GRing.ClosedField.type.
+Canonical closedFieldType.
+Canonical join_countType.
+Canonical join_countZmodType.
+Canonical join_countRingType.
+Canonical join_countComRingType.
+Canonical join_countUnitRingType.
+Canonical join_countComUnitRingType.
+Canonical join_countIdomainType.
+Canonical join_countFieldType.
+Canonical join_countDecFieldType.
+Notation countClosedFieldType := CountRing.ClosedField.type.
+Notation "[ 'countClosedFieldType' 'of' T ]" := (do_pack pack T)
+ (at level 0, format "[ 'countClosedFieldType' 'of' T ]") : form_scope.
+End Exports.
+
+End ClosedField.
+Import ClosedField.Exports.
+
+End CountRing.
+
+Import CountRing.
+Export Zmodule.Exports Ring.Exports ComRing.Exports UnitRing.Exports.
+Export ComUnitRing.Exports IntegralDomain.Exports.
+Export Field.Exports DecidableField.Exports ClosedField.Exports.
+
+Require Import poly polydiv generic_quotient ring_quotient.
+Require Import mxpoly polyXY.
+Import GRing.Theory.
+Require Import closed_field.
+
+Canonical Zp_countZmodType m := [countZmodType of 'I_m.+1].
+Canonical Zp_countRingType m := [countRingType of 'I_m.+2].
+Canonical Zp_countComRingType m := [countComRingType of 'I_m.+2].
+Canonical Zp_countUnitRingType m := [countUnitRingType of 'I_m.+2].
+Canonical Zp_countComUnitRingType m := [countComUnitRingType of 'I_m.+2].
+Canonical Fp_countIdomainType p := [countIdomainType of 'F_p].
+Canonical Fp_countFieldType p := [countFieldType of 'F_p].
+Canonical Fp_countDecFieldType p := [countDecFieldType of 'F_p].
+
+Canonical matrix_countZmodType (M : countZmodType) m n :=
+ [countZmodType of 'M[M]_(m, n)].
+Canonical matrix_countRingType (R : countRingType) n :=
+ [countRingType of 'M[R]_n.+1].
+Canonical matrix_countUnitRingType (R : countComUnitRingType) n :=
+ [countUnitRingType of 'M[R]_n.+1].
+
+Definition poly_countMixin (R : countRingType) :=
+ [countMixin of polynomial R by <:].
+Canonical polynomial_countType R := CountType _ (poly_countMixin R).
+Canonical poly_countType (R : countRingType) := [countType of {poly R}].
+Canonical polynomial_countZmodType (R : countRingType) :=
+ [countZmodType of polynomial R].
+Canonical poly_countZmodType (R : countRingType) := [countZmodType of {poly R}].
+Canonical polynomial_countRingType (R : countRingType) :=
+ [countRingType of polynomial R].
+Canonical poly_countRingType (R : countRingType) := [countRingType of {poly R}].
+Canonical polynomial_countComRingType (R : countComRingType) :=
+ [countComRingType of polynomial R].
+Canonical poly_countComRingType (R : countComRingType) :=
+ [countComRingType of {poly R}].
+Canonical polynomial_countUnitRingType (R : countIdomainType) :=
+ [countUnitRingType of polynomial R].
+Canonical poly_countUnitRingType (R : countIdomainType) :=
+ [countUnitRingType of {poly R}].
+Canonical polynomial_countComUnitRingType (R : countIdomainType) :=
+ [countComUnitRingType of polynomial R].
+Canonical poly_countComUnitRingType (R : countIdomainType) :=
+ [countComUnitRingType of {poly R}].
+Canonical polynomial_countIdomainType (R : countIdomainType) :=
+ [countIdomainType of polynomial R].
+Canonical poly_countIdomainType (R : countIdomainType) :=
+ [countIdomainType of {poly R}].
+
+Canonical int_countZmodType := [countZmodType of int].
+Canonical int_countRingType := [countRingType of int].
+Canonical int_countComRingType := [countComRingType of int].
+Canonical int_countUnitRingType := [countUnitRingType of int].
+Canonical int_countComUnitRingType := [countComUnitRingType of int].
+Canonical int_countIdomainType := [countIdomainType of int].
+
+Canonical rat_countZmodType := [countZmodType of rat].
+Canonical rat_countRingType := [countRingType of rat].
+Canonical rat_countComRingType := [countComRingType of rat].
+Canonical rat_countUnitRingType := [countUnitRingType of rat].
+Canonical rat_countComUnitRingType := [countComUnitRingType of rat].
+Canonical rat_countIdomainType := [countIdomainType of rat].
+Canonical rat_countFieldType := [countFieldType of rat].
+
+Lemma countable_field_extension (F : countFieldType) (p : {poly F}) :
+ size p > 1 ->
+ {E : countFieldType & {FtoE : {rmorphism F -> E} &
+ {w : E | root (map_poly FtoE p) w
+ & forall u : E, exists q, u = (map_poly FtoE q).[w]}}}.
+Proof.
+pose fix d i :=
+ if i is i1.+1 then
+ let d1 := oapp (gcdp (d i1)) 0 (unpickle i1) in
+ if size d1 > 1 then d1 else d i1
+ else p.
+move=> p_gt1; have sz_d i: size (d i) > 1 by elim: i => //= i IHi; case: ifP.
+have dv_d i j: i <= j -> d j %| d i.
+ move/subnK <-; elim: {j}(j - i)%N => //= j IHj; case: ifP => //=.
+ case: (unpickle _) => /= [q _|]; last by rewrite size_poly0.
+ exact: dvdp_trans (dvdp_gcdl _ _) IHj.
+pose I : pred {poly F} := [pred q | d (pickle q).+1 %| q].
+have I'co q i: q \notin I -> i > pickle q -> coprimep q (d i).
+ rewrite inE => I'q /dv_d/coprimep_dvdl-> //; apply: contraR I'q.
+ rewrite coprimep_sym /coprimep /= pickleK /= neq_ltn.
+ case: ifP => [_ _| ->]; first exact: dvdp_gcdr.
+ rewrite orbF ltnS leqn0 size_poly_eq0 gcdp_eq0 -size_poly_eq0.
+ by rewrite -leqn0 leqNgt ltnW //.
+have memI q: reflect (exists i, d i %| q) (q \in I).
+ apply: (iffP idP) => [|[i dv_di_q]]; first by exists (pickle q).+1.
+ have [le_i_q | /I'co i_co_q] := leqP i (pickle q).
+ rewrite inE /= pickleK /=; case: ifP => _; first exact: dvdp_gcdr.
+ exact: dvdp_trans (dv_d _ _ le_i_q) dv_di_q.
+ apply: contraR i_co_q _.
+ by rewrite /coprimep (eqp_size (dvdp_gcd_idr dv_di_q)) neq_ltn sz_d orbT.
+have I_ideal : idealr_closed I.
+ split=> [||a q1 q2 Iq1 Iq2]; first exact: dvdp0.
+ by apply/memI=> [[i /idPn[]]]; rewrite dvdp1 neq_ltn sz_d orbT.
+ apply/memI; exists (maxn (pickle q1).+1 (pickle q2).+1); apply: dvdp_add.
+ by apply: dvdp_mull; apply: dvdp_trans Iq1; apply/dv_d/leq_maxl.
+ by apply: dvdp_trans Iq2; apply/dv_d/leq_maxr.
+pose Iaddkey := GRing.Pred.Add (DefaultPredKey I) I_ideal.
+pose Iidkey := MkIdeal (GRing.Pred.Zmod Iaddkey I_ideal) I_ideal.
+pose E := ComRingType _ (@Quotient.mulqC _ _ _ (KeyedPred Iidkey)).
+pose PtoE : {rmorphism {poly F} -> E} := [rmorphism of \pi_E%qT : {poly F} -> E].
+have PtoEd i: PtoE (d i) = 0.
+ by apply/eqP; rewrite piE Quotient.equivE subr0; apply/memI; exists i.
+pose Einv (z : E) (q := repr z) (dq := d (pickle q).+1) :=
+ let q_unitP := Bezout_eq1_coprimepP q dq in
+ if q_unitP is ReflectT ex_uv then PtoE (sval (sig_eqW ex_uv)).1 else 0.
+have Einv0: Einv 0 = 0.
+ rewrite /Einv; case: Bezout_eq1_coprimepP => // ex_uv.
+ case/negP: (oner_neq0 E); rewrite piE -[_ 1]/(PtoE 1); have [uv <-] := ex_uv.
+ by rewrite rmorphD !rmorphM PtoEd /= reprK !mulr0 addr0.
+have EmulV: GRing.Field.axiom Einv.
+ rewrite /Einv=> z nz_z; case: Bezout_eq1_coprimepP => [ex_uv |]; last first.
+ move/Bezout_eq1_coprimepP; rewrite I'co //.
+ by rewrite piE -{1}[z]reprK -Quotient.idealrBE subr0 in nz_z.
+ apply/eqP; case: sig_eqW => {ex_uv} [uv uv1]; set i := _.+1 in uv1 *.
+ rewrite piE /= -[z]reprK -(rmorphM PtoE) -Quotient.idealrBE.
+ by rewrite -uv1 opprD addNKr -mulNr; apply/memI; exists i; exact: dvdp_mull.
+pose EringU := [comUnitRingType of UnitRingType _ (FieldUnitMixin EmulV Einv0)].
+have Eunitf := @FieldMixin _ _ EmulV Einv0.
+pose Efield := FieldType (IdomainType EringU (FieldIdomainMixin Eunitf)) Eunitf.
+pose Ecount := CountType Efield (CanCountMixin (@reprK _ _)).
+pose FtoE := [rmorphism of PtoE \o polyC]; pose w : E := PtoE 'X.
+have defPtoE q: (map_poly FtoE q).[w] = PtoE q.
+ by rewrite map_poly_comp horner_map [_.['X]]comp_polyXr.
+exists [countFieldType of Ecount], FtoE, w => [|u].
+ by rewrite /root defPtoE (PtoEd 0%N).
+by exists (repr u); rewrite defPtoE /= reprK.
+Qed.
+
+Lemma countable_algebraic_closure (F : countFieldType) :
+ {K : countClosedFieldType & {FtoK : {rmorphism F -> K} | integralRange FtoK}}.
+Proof.
+pose minXp (R : ringType) (p : {poly R}) := if size p > 1 then p else 'X.
+have minXp_gt1 R p: size (minXp R p) > 1.
+ by rewrite /minXp; case: ifP => // _; rewrite size_polyX.
+have minXpE (R : ringType) (p : {poly R}) : size p > 1 -> minXp R p = p.
+ by rewrite /minXp => ->.
+have ext1 p := countable_field_extension (minXp_gt1 _ p).
+pose ext1fT E p := tag (ext1 E p).
+pose ext1to E p : {rmorphism _ -> ext1fT E p} := tag (tagged (ext1 E p)).
+pose ext1w E p : ext1fT E p := s2val (tagged (tagged (ext1 E p))).
+have ext1root E p: root (map_poly (ext1to E p) (minXp E p)) (ext1w E p).
+ by rewrite /ext1w; case: (tagged (tagged (ext1 E p))).
+have ext1gen E p u: {q | u = (map_poly (ext1to E p) q).[ext1w E p]}.
+ by apply: sig_eqW; rewrite /ext1w; case: (tagged (tagged (ext1 E p))) u.
+pose pExtEnum (E : countFieldType) := nat -> {poly E}.
+pose Ext := {E : countFieldType & pExtEnum E}; pose MkExt : Ext := Tagged _ _.
+pose EtoInc (E : Ext) i := ext1to (tag E) (tagged E i).
+pose incEp E i j :=
+ let v := map_poly (EtoInc E i) (tagged E j) in
+ if decode j is [:: i1; k] then
+ if i1 == i then odflt v (unpickle k) else v
+ else v.
+pose fix E_ i := if i is i1.+1 then MkExt _ (incEp (E_ i1) i1) else MkExt F \0.
+pose E i := tag (E_ i); pose Krep := {i : nat & E i}.
+pose fix toEadd i k : {rmorphism E i -> E (k + i)%N} :=
+ if k is k1.+1 then [rmorphism of EtoInc _ (k1 + i)%N \o toEadd _ _]
+ else [rmorphism of idfun].
+pose toE i j (le_ij : i <= j) :=
+ ecast j {rmorphism E i -> E j} (subnK le_ij) (toEadd i (j - i)%N).
+have toEeq i le_ii: toE i i le_ii =1 id.
+ by rewrite /toE; move: (subnK _); rewrite subnn => ?; rewrite eq_axiomK.
+have toEleS i j leij leiSj z: toE i j.+1 leiSj z = EtoInc _ _ (toE i j leij z).
+ rewrite /toE; move: (j - i)%N {leij leiSj}(subnK _) (subnK _) => k.
+ by case: j /; rewrite (addnK i k.+1) => eq_kk; rewrite [eq_kk]eq_axiomK.
+have toEirr := congr1 ((toE _ _)^~ _) (bool_irrelevance _ _).
+have toEtrans j i k leij lejk leik z:
+ toE i k leik z = toE j k lejk (toE i j leij z).
+- elim: k leik lejk => [|k IHk] leiSk lejSk.
+ by case: j => // in leij lejSk *; rewrite toEeq.
+ have:= lejSk; rewrite {1}leq_eqVlt ltnS => /predU1P[Dk | lejk].
+ by rewrite -Dk in leiSk lejSk *; rewrite toEeq.
+ by have leik := leq_trans leij lejk; rewrite !toEleS -IHk.
+have [leMl leMr] := (leq_maxl, leq_maxr); pose le_max := (leq_max, leqnn, orbT).
+pose pairK (x y : Krep) (m := maxn _ _) :=
+ (toE _ m (leMl _ _) (tagged x), toE _ m (leMr _ _) (tagged y)).
+pose eqKrep x y := prod_curry (@eq_op _) (pairK x y).
+have eqKrefl : reflexive eqKrep by move=> z; apply/eqP; apply: toEirr.
+have eqKsym : symmetric eqKrep.
+ move=> z1 z2; rewrite {1}/eqKrep /= eq_sym; move: (leMl _ _) (leMr _ _).
+ by rewrite maxnC => lez1m lez2m; congr (_ == _); apply: toEirr.
+have eqKtrans : transitive eqKrep.
+ rewrite /eqKrep /= => z2 z1 z3 /eqP eq_z12 /eqP eq_z23.
+ rewrite -(inj_eq (fmorph_inj (toE _ _ (leMr (tag z2) _)))).
+ rewrite -!toEtrans ?le_max // maxnCA maxnA => lez3m lez1m.
+ rewrite {lez1m}(toEtrans (maxn (tag z1) (tag z2))) // {}eq_z12.
+ do [rewrite -toEtrans ?le_max // -maxnA => lez2m] in lez3m *.
+ by rewrite (toEtrans (maxn (tag z2) (tag z3))) // eq_z23 -toEtrans.
+pose K := {eq_quot (EquivRel _ eqKrefl eqKsym eqKtrans)}%qT.
+have cntK : Countable.mixin_of K := CanCountMixin (@reprK _ _).
+pose EtoKrep i (x : E i) : K := \pi%qT (Tagged E x).
+have [EtoK piEtoK]: {EtoK | forall i, EtoKrep i =1 EtoK i} by exists EtoKrep.
+pose FtoK := EtoK 0%N; rewrite {}/EtoKrep in piEtoK.
+have eqEtoK i j x y:
+ toE i _ (leMl i j) x = toE j _ (leMr i j) y -> EtoK i x = EtoK j y.
+- by move/eqP=> eq_xy; rewrite -!piEtoK; apply/eqmodP.
+have toEtoK j i leij x : EtoK j (toE i j leij x) = EtoK i x.
+ by apply: eqEtoK; rewrite -toEtrans.
+have EtoK_0 i: EtoK i 0 = FtoK 0 by apply: eqEtoK; rewrite !rmorph0.
+have EtoK_1 i: EtoK i 1 = FtoK 1 by apply: eqEtoK; rewrite !rmorph1.
+have EtoKeq0 i x: (EtoK i x == FtoK 0) = (x == 0).
+ by rewrite /FtoK -!piEtoK eqmodE /= /eqKrep /= rmorph0 fmorph_eq0.
+have toErepr m i leim x lerm:
+ toE _ m lerm (tagged (repr (EtoK i x))) = toE i m leim x.
+- have: (Tagged E x == repr (EtoK i x) %[mod K])%qT by rewrite reprK piEtoK.
+ rewrite eqmodE /= /eqKrep; case: (repr _) => j y /= in lerm * => /eqP /=.
+ have leijm: maxn i j <= m by rewrite geq_max leim.
+ by move/(congr1 (toE _ _ leijm)); rewrite -!toEtrans.
+pose Kadd (x y : K) := EtoK _ (prod_curry +%R (pairK (repr x) (repr y))).
+pose Kopp (x : K) := EtoK _ (- tagged (repr x)).
+pose Kmul (x y : K) := EtoK _ (prod_curry *%R (pairK (repr x) (repr y))).
+pose Kinv (x : K) := EtoK _ (tagged (repr x))^-1.
+have EtoK_D i: {morph EtoK i : x y / x + y >-> Kadd x y}.
+ move=> x y; apply: eqEtoK; set j := maxn (tag _) _; rewrite !rmorphD.
+ by rewrite -!toEtrans ?le_max // => lexm leym; rewrite !toErepr.
+have EtoK_N i: {morph EtoK i : x / - x >-> Kopp x}.
+ by move=> x; apply: eqEtoK; set j := tag _; rewrite !rmorphN toErepr.
+have EtoK_M i: {morph EtoK i : x y / x * y >-> Kmul x y}.
+ move=> x y; apply: eqEtoK; set j := maxn (tag _) _; rewrite !rmorphM.
+ by rewrite -!toEtrans ?le_max // => lexm leym; rewrite !toErepr.
+have EtoK_V i: {morph EtoK i : x / x^-1 >-> Kinv x}.
+ by move=> x; apply: eqEtoK; set j := tag _; rewrite !fmorphV toErepr.
+case: {toErepr}I in (Kadd) (Kopp) (Kmul) (Kinv) EtoK_D EtoK_N EtoK_M EtoK_V.
+pose inEi i z := {x : E i | z = EtoK i x}; have KtoE z: {i : nat & inEi i z}.
+ by elim/quotW: z => [[i x] /=]; exists i, x; rewrite piEtoK.
+have inEle i j z: i <= j -> inEi i z -> inEi j z.
+ by move=> leij [x ->]; exists (toE i j leij x); rewrite toEtoK.
+have KtoE2 z1 z2: {i : nat & inEi i z1 & inEi i z2}.
+ have [[i1 Ez1] [i2 Ez2]] := (KtoE z1, KtoE z2).
+ by exists (maxn i1 i2); [apply: inEle Ez1 | apply: inEle Ez2].
+have KtoE3 z1 z2 z3: {i : nat & inEi i z1 & inEi i z2 * inEi i z3}%type.
+ have [[i1 Ez1] [i2 Ez2 Ez3]] := (KtoE z1, KtoE2 z2 z3).
+ by exists (maxn i1 i2); [apply: inEle Ez1 | split; apply: inEle (leMr _ _) _].
+have KaddC: commutative Kadd.
+ by move=> u v; have [i [x ->] [y ->]] := KtoE2 u v; rewrite -!EtoK_D addrC.
+have KaddA: associative Kadd.
+ move=> u v w; have [i [x ->] [[y ->] [z ->]]] := KtoE3 u v w.
+ by rewrite -!EtoK_D addrA.
+have Kadd0: left_id (FtoK 0) Kadd.
+ by move=> u; have [i [x ->]] := KtoE u; rewrite -(EtoK_0 i) -EtoK_D add0r.
+have KaddN: left_inverse (FtoK 0) Kopp Kadd.
+ by move=> u; have [i [x ->]] := KtoE u; rewrite -EtoK_N -EtoK_D addNr EtoK_0.
+pose Kzmod := ZmodType K (ZmodMixin KaddA KaddC Kadd0 KaddN).
+have KmulC: commutative Kmul.
+ by move=> u v; have [i [x ->] [y ->]] := KtoE2 u v; rewrite -!EtoK_M mulrC.
+have KmulA: @associative Kzmod Kmul.
+ move=> u v w; have [i [x ->] [[y ->] [z ->]]] := KtoE3 u v w.
+ by rewrite -!EtoK_M mulrA.
+have Kmul1: left_id (FtoK 1) Kmul.
+ by move=> u; have [i [x ->]] := KtoE u; rewrite -(EtoK_1 i) -EtoK_M mul1r.
+have KmulD: left_distributive Kmul Kadd.
+ move=> u v w; have [i [x ->] [[y ->] [z ->]]] := KtoE3 u v w.
+ by rewrite -!(EtoK_M, EtoK_D) mulrDl.
+have Kone_nz: FtoK 1 != FtoK 0 by rewrite EtoKeq0 oner_neq0.
+pose KringMixin := ComRingMixin KmulA KmulC Kmul1 KmulD Kone_nz.
+pose Kring := ComRingType (RingType Kzmod KringMixin) KmulC.
+have KmulV: @GRing.Field.axiom Kring Kinv.
+ move=> u; have [i [x ->]] := KtoE u; rewrite EtoKeq0 => nz_x.
+ by rewrite -EtoK_V -[_ * _]EtoK_M mulVf ?EtoK_1.
+have Kinv0: Kinv (FtoK 0) = FtoK 0 by rewrite -EtoK_V invr0.
+pose Kuring := [comUnitRingType of UnitRingType _ (FieldUnitMixin KmulV Kinv0)].
+pose KfieldMixin := @FieldMixin _ _ KmulV Kinv0.
+pose Kidomain := IdomainType Kuring (FieldIdomainMixin KfieldMixin).
+pose Kfield := FieldType Kidomain KfieldMixin.
+have EtoKrmorphism i: rmorphism (EtoK i : E i -> Kfield).
+ by do 2?split=> [x y|]; rewrite ?EtoK_D ?EtoK_N ?EtoK_M ?EtoK_1.
+pose EtoKM := RMorphism (EtoKrmorphism _); have EtoK_E: EtoK _ = EtoKM _ by [].
+have toEtoKp := @eq_map_poly _ Kring _ _(toEtoK _ _ _).
+have Kclosed: GRing.ClosedField.axiom Kfield.
+ move=> n pK n_gt0; pose m0 := \max_(i < n) tag (KtoE (pK i)); pose m := m0.+1.
+ have /fin_all_exists[pE DpE] (i : 'I_n): exists y, EtoK m y = pK i.
+ pose u := KtoE (pK i); have leum0: tag u <= m0 by rewrite (bigmax_sup i).
+ by have [y ->] := tagged u; exists (toE _ _ (leqW leum0) y); rewrite toEtoK.
+ pose p := 'X^n - rVpoly (\row_i pE i); pose j := code [:: m0; pickle p].
+ pose pj := tagged (E_ j) j; pose w : E j.+1 := ext1w (E j) pj.
+ have lemj: m <= j by rewrite (allP (ltn_code _)) ?mem_head.
+ exists (EtoKM j.+1 w); apply/eqP; rewrite -subr_eq0; apply/eqP.
+ transitivity (EtoKM j.+1 (map_poly (toE m j.+1 (leqW lemj)) p).[w]).
+ rewrite -horner_map -map_poly_comp toEtoKp EtoK_E; move/EtoKM: w => w.
+ rewrite rmorphB [_ 'X^n]map_polyXn !hornerE hornerXn; congr (_ - _ : Kring).
+ rewrite (@horner_coef_wide _ n) ?size_map_poly ?size_poly //.
+ by apply: eq_bigr => i _; rewrite coef_map coef_rVpoly valK mxE /= DpE.
+ suffices Dpj: map_poly (toE m j lemj) p = pj.
+ apply/eqP; rewrite EtoKeq0 (eq_map_poly (toEleS _ _ _ _)) map_poly_comp Dpj.
+ rewrite -rootE -[pj]minXpE ?ext1root // -Dpj size_map_poly.
+ by rewrite size_addl ?size_polyXn ltnS ?size_opp ?size_poly.
+ rewrite {w}/pj; elim: {-9}j lemj => // k IHk lemSk.
+ move: lemSk (lemSk); rewrite {1}leq_eqVlt ltnS => /predU1P[<- | lemk] lemSk.
+ rewrite {k IHk lemSk}(eq_map_poly (toEeq m _)) map_poly_id //= /incEp.
+ by rewrite codeK eqxx pickleK.
+ rewrite (eq_map_poly (toEleS _ _ _ _)) map_poly_comp {}IHk //= /incEp codeK.
+ by rewrite -if_neg neq_ltn lemk.
+suffices{Kclosed} algF_K: {FtoK : {rmorphism F -> Kfield} | integralRange FtoK}.
+ pose Kdec := DecFieldType Kfield (closed_fields_QEMixin Kclosed).
+ pose KclosedField := ClosedFieldType Kdec Kclosed.
+ by exists [countClosedFieldType of CountType KclosedField cntK].
+exists (EtoKM 0%N) => /= z; have [i [{z}z ->]] := KtoE z.
+suffices{z} /(_ z)[p mon_p]: integralRange (toE 0%N i isT).
+ by rewrite -(fmorph_root (EtoKM i)) -map_poly_comp toEtoKp; exists p.
+rewrite /toE /E; clear - minXp_gt1 ext1root ext1gen.
+move: (i - 0)%N (subnK _) => n; case: i /.
+elim: n => [|n IHn] /= z; first exact: integral_id.
+have{z} [q ->] := ext1gen _ _ z; set pn := tagged (E_ _) _.
+apply: integral_horner.
+ by apply/integral_poly=> i; rewrite coef_map; apply: integral_rmorph.
+apply: integral_root (ext1root _ _) _.
+ by rewrite map_poly_eq0 -size_poly_gt0 ltnW.
+by apply/integral_poly=> i; rewrite coef_map; apply: integral_rmorph.
+Qed.