diff options
| author | Enrico Tassi | 2015-03-09 11:07:53 +0100 |
|---|---|---|
| committer | Enrico Tassi | 2015-03-09 11:24:38 +0100 |
| commit | fc84c27eac260dffd8f2fb1cb56d599f1e3486d9 (patch) | |
| tree | c16205f1637c80833a4c4598993c29fa0fd8c373 /mathcomp/field/countalg.v | |
Initial commit
Diffstat (limited to 'mathcomp/field/countalg.v')
| -rw-r--r-- | mathcomp/field/countalg.v | 1107 |
1 files changed, 1107 insertions, 0 deletions
diff --git a/mathcomp/field/countalg.v b/mathcomp/field/countalg.v new file mode 100644 index 0000000..68dd16f --- /dev/null +++ b/mathcomp/field/countalg.v @@ -0,0 +1,1107 @@ +(* (c) Copyright Microsoft Corporation and Inria. All rights reserved. *) +Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice fintype. +Require Import bigop ssralg finalg zmodp matrix mxalgebra. +Require Import poly polydiv mxpoly generic_quotient ring_quotient closed_field. +Require Import ssrint rat. + +(*****************************************************************************) +(* This file clones part of ssralg hierachy for countable types; it does not *) +(* cover the left module / algebra interfaces, providing only *) +(* countZmodType == countable zmodType interface. *) +(* countRingType == countable ringType interface. *) +(* countComRingType == countable comRingType interface. *) +(* countUnitRingType == countable unitRingType interface. *) +(* countComUnitRingType == countable comUnitRingType interface. *) +(* countIdomainType == countable idomainType interface. *) +(* countFieldType == countable fieldType interface. *) +(* countDecFieldType == countable decFieldType interface. *) +(* countClosedFieldType == countable closedFieldType interface. *) +(* The interface cloning syntax is extended to these structures *) +(* [countZmodType of M] == countZmodType structure for an M that has both *) +(* zmodType and countType structures. *) +(* ... etc *) +(* This file provides constructions for both simple extension and algebraic *) +(* closure of countable fields. *) +(*****************************************************************************) + +Set Implicit Arguments. +Unset Strict Implicit. +Unset Printing Implicit Defensive. + +Local Open Scope ring_scope. +Import GRing.Theory CodeSeq. + +Module CountRing. + +Local Notation mixin_of T := (Countable.mixin_of T). + +Section Generic. + +(* Implicits *) +Variables (type base_type : Type) (class_of base_of : Type -> Type). +Variable base_sort : base_type -> Type. + +(* Explicits *) +Variable Pack : forall T, class_of T -> Type -> type. +Variable Class : forall T, base_of T -> mixin_of T -> class_of T. +Variable base_class : forall bT, base_of (base_sort bT). + +Definition gen_pack T := + fun bT b & phant_id (base_class bT) b => + fun fT c m & phant_id (Countable.class fT) (Countable.Class c m) => + Pack (@Class T b m) T. + +End Generic. + +Implicit Arguments gen_pack [type base_type class_of base_of base_sort]. +Local Notation cnt_ c := (@Countable.Class _ c c). +Local Notation do_pack pack T := (pack T _ _ id _ _ _ id). +Import GRing.Theory. + +Module Zmodule. + +Section ClassDef. + +Record class_of M := + Class { base : GRing.Zmodule.class_of M; mixin : mixin_of M }. +Local Coercion base : class_of >-> GRing.Zmodule.class_of. +Local Coercion mixin : class_of >-> mixin_of. + +Structure type := Pack {sort; _ : class_of sort; _ : Type}. +Local Coercion sort : type >-> Sortclass. +Definition pack := gen_pack Pack Class GRing.Zmodule.class. +Variable cT : type. +Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c. +Let xT := let: Pack T _ _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition eqType := @Equality.Pack cT xclass xT. +Definition choiceType := @Choice.Pack cT xclass xT. +Definition countType := @Countable.Pack cT (cnt_ xclass) xT. +Definition zmodType := @GRing.Zmodule.Pack cT xclass xT. + +Definition join_countType := @Countable.Pack zmodType (cnt_ xclass) xT. + +End ClassDef. + +Module Exports. +Coercion base : class_of >-> GRing.Zmodule.class_of. +Coercion mixin : class_of >-> mixin_of. +Coercion sort : type >-> Sortclass. +Bind Scope ring_scope with sort. +Coercion eqType : type >-> Equality.type. +Canonical eqType. +Coercion choiceType : type >-> Choice.type. +Canonical choiceType. +Coercion countType : type >-> Countable.type. +Canonical countType. +Coercion zmodType : type >-> GRing.Zmodule.type. +Canonical zmodType. +Canonical join_countType. +Notation countZmodType := type. +Notation "[ 'countZmodType' 'of' T ]" := (do_pack pack T) + (at level 0, format "[ 'countZmodType' 'of' T ]") : form_scope. +End Exports. + +End Zmodule. +Import Zmodule.Exports. + +Module Ring. + +Section ClassDef. + +Record class_of R := Class { base : GRing.Ring.class_of R; mixin : mixin_of R }. +Definition base2 R (c : class_of R) := Zmodule.Class (base c) (mixin c). +Local Coercion base : class_of >-> GRing.Ring.class_of. +Local Coercion base2 : class_of >-> Zmodule.class_of. + +Structure type := Pack {sort; _ : class_of sort; _ : Type}. +Local Coercion sort : type >-> Sortclass. +Definition pack := gen_pack Pack Class GRing.Ring.class. +Variable cT : type. +Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c. +Let xT := let: Pack T _ _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition eqType := @Equality.Pack cT xclass xT. +Definition choiceType := @Choice.Pack cT xclass xT. +Definition countType := @Countable.Pack cT (cnt_ xclass) xT. +Definition zmodType := @GRing.Zmodule.Pack cT xclass cT. +Definition countZmodType := @Zmodule.Pack cT xclass xT. +Definition ringType := @GRing.Ring.Pack cT xclass xT. +Definition join_countType := @Countable.Pack ringType (cnt_ xclass) xT. +Definition join_countZmodType := @Zmodule.Pack ringType xclass xT. + +End ClassDef. + +Module Import Exports. +Coercion base : class_of >-> GRing.Ring.class_of. +Coercion base2 : class_of >-> Zmodule.class_of. +Coercion sort : type >-> Sortclass. +Bind Scope ring_scope with sort. +Coercion eqType : type >-> Equality.type. +Canonical eqType. +Coercion choiceType : type >-> Choice.type. +Canonical choiceType. +Coercion countType : type >-> Countable.type. +Canonical countType. +Coercion zmodType : type >-> GRing.Zmodule.type. +Canonical zmodType. +Coercion countZmodType : type >-> Zmodule.type. +Canonical countZmodType. +Coercion ringType : type >-> GRing.Ring.type. +Canonical ringType. +Canonical join_countType. +Canonical join_countZmodType. +Notation countRingType := type. +Notation "[ 'countRingType' 'of' T ]" := (do_pack pack T) + (at level 0, format "[ 'countRingType' 'of' T ]") : form_scope. +End Exports. + +End Ring. +Import Ring.Exports. + +Module ComRing. + +Section ClassDef. + +Record class_of R := + Class { base : GRing.ComRing.class_of R; mixin : mixin_of R }. +Definition base2 R (c : class_of R) := Ring.Class (base c) (mixin c). +Local Coercion base : class_of >-> GRing.ComRing.class_of. +Local Coercion base2 : class_of >-> Ring.class_of. + +Structure type := Pack {sort; _ : class_of sort; _ : Type}. +Local Coercion sort : type >-> Sortclass. +Definition pack := gen_pack Pack Class GRing.ComRing.class. +Variable cT : type. +Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c. +Let xT := let: Pack T _ _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition eqType := @Equality.Pack cT xclass xT. +Definition choiceType := @Choice.Pack cT xclass xT. +Definition countType := @Countable.Pack cT (cnt_ xclass) xT. +Definition zmodType := @GRing.Zmodule.Pack cT xclass xT. +Definition countZmodType := @Zmodule.Pack cT xclass xT. +Definition ringType := @GRing.Ring.Pack cT xclass xT. +Definition countRingType := @Ring.Pack cT xclass xT. +Definition comRingType := @GRing.ComRing.Pack cT xclass xT. +Definition join_countType := @Countable.Pack comRingType (cnt_ xclass) xT. +Definition join_countZmodType := @Zmodule.Pack comRingType xclass xT. +Definition join_countRingType := @Ring.Pack comRingType xclass xT. + +End ClassDef. + +Module Exports. +Coercion base : class_of >-> GRing.ComRing.class_of. +Coercion base2 : class_of >-> Ring.class_of. +Coercion sort : type >-> Sortclass. +Bind Scope ring_scope with sort. +Coercion eqType : type >-> Equality.type. +Canonical eqType. +Coercion choiceType : type >-> Choice.type. +Canonical choiceType. +Coercion countType : type >-> Countable.type. +Canonical countType. +Coercion zmodType : type >-> GRing.Zmodule.type. +Canonical zmodType. +Coercion countZmodType : type >-> Zmodule.type. +Canonical countZmodType. +Coercion ringType : type >-> GRing.Ring.type. +Canonical ringType. +Coercion countRingType : type >-> Ring.type. +Canonical countRingType. +Coercion comRingType : type >-> GRing.ComRing.type. +Canonical comRingType. +Canonical join_countType. +Canonical join_countZmodType. +Canonical join_countRingType. +Notation countComRingType := CountRing.ComRing.type. +Notation "[ 'countComRingType' 'of' T ]" := (do_pack pack T) + (at level 0, format "[ 'countComRingType' 'of' T ]") : form_scope. +End Exports. + +End ComRing. +Import ComRing.Exports. + +Module UnitRing. + +Section ClassDef. + +Record class_of R := + Class { base : GRing.UnitRing.class_of R; mixin : mixin_of R }. +Definition base2 R (c : class_of R) := Ring.Class (base c) (mixin c). +Local Coercion base : class_of >-> GRing.UnitRing.class_of. +Local Coercion base2 : class_of >-> Ring.class_of. + +Structure type := Pack {sort; _ : class_of sort; _ : Type}. +Local Coercion sort : type >-> Sortclass. +Definition pack := gen_pack Pack Class GRing.UnitRing.class. +Variable cT : type. +Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c. +Let xT := let: Pack T _ _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition eqType := @Equality.Pack cT xclass xT. +Definition choiceType := @Choice.Pack cT xclass xT. +Definition countType := @Countable.Pack cT (cnt_ xclass) xT. +Definition zmodType := @GRing.Zmodule.Pack cT xclass xT. +Definition countZmodType := @Zmodule.Pack cT xclass xT. +Definition ringType := @GRing.Ring.Pack cT xclass xT. +Definition countRingType := @Ring.Pack cT xclass xT. +Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT. + +Definition join_countType := @Countable.Pack unitRingType (cnt_ xclass) xT. +Definition join_countZmodType := @Zmodule.Pack unitRingType xclass xT. +Definition join_countRingType := @Ring.Pack unitRingType xclass xT. + +End ClassDef. + +Module Exports. +Coercion base : class_of >-> GRing.UnitRing.class_of. +Coercion base2 : class_of >-> Ring.class_of. +Coercion sort : type >-> Sortclass. +Bind Scope ring_scope with sort. +Coercion eqType : type >-> Equality.type. +Canonical eqType. +Coercion choiceType : type >-> Choice.type. +Canonical choiceType. +Coercion countType : type >-> Countable.type. +Canonical countType. +Coercion zmodType : type >-> GRing.Zmodule.type. +Canonical zmodType. +Coercion countZmodType : type >-> Zmodule.type. +Canonical countZmodType. +Coercion ringType : type >-> GRing.Ring.type. +Canonical ringType. +Coercion countRingType : type >-> Ring.type. +Canonical countRingType. +Coercion unitRingType : type >-> GRing.UnitRing.type. +Canonical unitRingType. +Canonical join_countType. +Canonical join_countZmodType. +Canonical join_countRingType. +Notation countUnitRingType := CountRing.UnitRing.type. +Notation "[ 'countUnitRingType' 'of' T ]" := (do_pack pack T) + (at level 0, format "[ 'countUnitRingType' 'of' T ]") : form_scope. +End Exports. + +End UnitRing. +Import UnitRing.Exports. + +Module ComUnitRing. + +Section ClassDef. + +Record class_of R := + Class { base : GRing.ComUnitRing.class_of R; mixin : mixin_of R }. +Definition base2 R (c : class_of R) := ComRing.Class (base c) (mixin c). +Definition base3 R (c : class_of R) := @UnitRing.Class R (base c) (mixin c). +Local Coercion base : class_of >-> GRing.ComUnitRing.class_of. +Local Coercion base2 : class_of >-> ComRing.class_of. +Local Coercion base3 : class_of >-> UnitRing.class_of. + +Structure type := Pack {sort; _ : class_of sort; _ : Type}. +Local Coercion sort : type >-> Sortclass. +Definition pack := gen_pack Pack Class GRing.ComUnitRing.class. +Variable cT : type. +Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c. +Let xT := let: Pack T _ _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition eqType := @Equality.Pack cT xclass xT. +Definition choiceType := @Choice.Pack cT xclass xT. +Definition countType := @Countable.Pack cT (cnt_ xclass) xT. +Definition zmodType := @GRing.Zmodule.Pack cT xclass xT. +Definition countZmodType := @Zmodule.Pack cT xclass xT. +Definition ringType := @GRing.Ring.Pack cT xclass xT. +Definition countRingType := @Ring.Pack cT xclass xT. +Definition comRingType := @GRing.ComRing.Pack cT xclass xT. +Definition countComRingType := @ComRing.Pack cT xclass xT. +Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT. +Definition countUnitRingType := @UnitRing.Pack cT xclass xT. +Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass xT. + +Definition join_countType := @Countable.Pack comUnitRingType (cnt_ xclass) xT. +Definition join_countZmodType := @Zmodule.Pack comUnitRingType xclass xT. +Definition join_countRingType := @Ring.Pack comUnitRingType xclass xT. +Definition join_countComRingType := @ComRing.Pack comUnitRingType xclass xT. +Definition join_countUnitRingType := @UnitRing.Pack comUnitRingType xclass xT. +Definition ujoin_countComRingType := @ComRing.Pack unitRingType xclass xT. +Definition cjoin_countUnitRingType := @UnitRing.Pack comRingType xclass xT. +Definition ccjoin_countUnitRingType := + @UnitRing.Pack countComRingType xclass xT. + +End ClassDef. + +Module Exports. +Coercion base : class_of >-> GRing.ComUnitRing.class_of. +Coercion base2 : class_of >-> ComRing.class_of. +Coercion base3 : class_of >-> UnitRing.class_of. +Coercion sort : type >-> Sortclass. +Bind Scope ring_scope with sort. +Coercion eqType : type >-> Equality.type. +Canonical eqType. +Coercion choiceType : type >-> Choice.type. +Canonical choiceType. +Coercion countType : type >-> Countable.type. +Canonical countType. +Coercion zmodType : type >-> GRing.Zmodule.type. +Canonical zmodType. +Coercion countZmodType : type >-> Zmodule.type. +Canonical countZmodType. +Coercion ringType : type >-> GRing.Ring.type. +Canonical ringType. +Coercion countRingType : type >-> Ring.type. +Canonical countRingType. +Coercion comRingType : type >-> GRing.ComRing.type. +Canonical comRingType. +Coercion countComRingType : type >-> ComRing.type. +Canonical countComRingType. +Coercion unitRingType : type >-> GRing.UnitRing.type. +Canonical unitRingType. +Coercion countUnitRingType : type >-> UnitRing.type. +Canonical countUnitRingType. +Coercion comUnitRingType : type >-> GRing.ComUnitRing.type. +Canonical comUnitRingType. +Canonical join_countType. +Canonical join_countZmodType. +Canonical join_countRingType. +Canonical join_countComRingType. +Canonical join_countUnitRingType. +Canonical ujoin_countComRingType. +Canonical cjoin_countUnitRingType. +Canonical ccjoin_countUnitRingType. +Notation countComUnitRingType := CountRing.ComUnitRing.type. +Notation "[ 'countComUnitRingType' 'of' T ]" := (do_pack pack T) + (at level 0, format "[ 'countComUnitRingType' 'of' T ]") : form_scope. +End Exports. + +End ComUnitRing. +Import ComUnitRing.Exports. + +Module IntegralDomain. + +Section ClassDef. + +Record class_of R := + Class { base : GRing.IntegralDomain.class_of R; mixin : mixin_of R }. +Definition base2 R (c : class_of R) := ComUnitRing.Class (base c) (mixin c). +Local Coercion base : class_of >-> GRing.IntegralDomain.class_of. +Local Coercion base2 : class_of >-> ComUnitRing.class_of. + +Structure type := Pack {sort; _ : class_of sort; _ : Type}. +Local Coercion sort : type >-> Sortclass. +Definition pack := gen_pack Pack Class GRing.IntegralDomain.class. +Variable cT : type. +Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c. +Let xT := let: Pack T _ _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition eqType := @Equality.Pack cT xclass xT. +Definition choiceType := @Choice.Pack cT xclass xT. +Definition countType := @Countable.Pack cT (cnt_ xclass) xT. +Definition zmodType := @GRing.Zmodule.Pack cT xclass xT. +Definition countZmodType := @Zmodule.Pack cT xclass xT. +Definition ringType := @GRing.Ring.Pack cT xclass xT. +Definition countRingType := @Ring.Pack cT xclass xT. +Definition comRingType := @GRing.ComRing.Pack cT xclass xT. +Definition countComRingType := @ComRing.Pack cT xclass xT. +Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT. +Definition countUnitRingType := @UnitRing.Pack cT xclass xT. +Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass xT. +Definition countComUnitRingType := @ComUnitRing.Pack cT xclass xT. +Definition idomainType := @GRing.IntegralDomain.Pack cT xclass xT. + +Definition join_countType := @Countable.Pack idomainType (cnt_ xclass) xT. +Definition join_countZmodType := @Zmodule.Pack idomainType xclass xT. +Definition join_countRingType := @Ring.Pack idomainType xclass xT. +Definition join_countUnitRingType := @UnitRing.Pack idomainType xclass xT. +Definition join_countComRingType := @ComRing.Pack idomainType xclass xT. +Definition join_countComUnitRingType := @ComUnitRing.Pack idomainType xclass xT. + +End ClassDef. + +Module Exports. +Coercion base : class_of >-> GRing.IntegralDomain.class_of. +Coercion base2 : class_of >-> ComUnitRing.class_of. +Coercion sort : type >-> Sortclass. +Bind Scope ring_scope with sort. +Coercion eqType : type >-> Equality.type. +Canonical eqType. +Coercion choiceType : type >-> Choice.type. +Canonical choiceType. +Coercion countType : type >-> Countable.type. +Canonical countType. +Coercion zmodType : type >-> GRing.Zmodule.type. +Canonical zmodType. +Coercion countZmodType : type >-> Zmodule.type. +Canonical countZmodType. +Coercion ringType : type >-> GRing.Ring.type. +Canonical ringType. +Coercion countRingType : type >-> Ring.type. +Canonical countRingType. +Coercion comRingType : type >-> GRing.ComRing.type. +Canonical comRingType. +Coercion countComRingType : type >-> ComRing.type. +Canonical countComRingType. +Coercion unitRingType : type >-> GRing.UnitRing.type. +Canonical unitRingType. +Coercion countUnitRingType : type >-> UnitRing.type. +Canonical countUnitRingType. +Coercion comUnitRingType : type >-> GRing.ComUnitRing.type. +Canonical comUnitRingType. +Coercion countComUnitRingType : type >-> ComUnitRing.type. +Canonical countComUnitRingType. +Coercion idomainType : type >-> GRing.IntegralDomain.type. +Canonical idomainType. +Canonical join_countType. +Canonical join_countZmodType. +Canonical join_countRingType. +Canonical join_countComRingType. +Canonical join_countUnitRingType. +Canonical join_countComUnitRingType. +Notation countIdomainType := CountRing.IntegralDomain.type. +Notation "[ 'countIdomainType' 'of' T ]" := (do_pack pack T) + (at level 0, format "[ 'countIdomainType' 'of' T ]") : form_scope. +End Exports. + +End IntegralDomain. +Import IntegralDomain.Exports. + +Module Field. + +Section ClassDef. + +Record class_of R := + Class { base : GRing.Field.class_of R; mixin : mixin_of R }. +Definition base2 R (c : class_of R) := IntegralDomain.Class (base c) (mixin c). +Local Coercion base : class_of >-> GRing.Field.class_of. +Local Coercion base2 : class_of >-> IntegralDomain.class_of. + +Structure type := Pack {sort; _ : class_of sort; _ : Type}. +Local Coercion sort : type >-> Sortclass. +Definition pack := gen_pack Pack Class GRing.Field.class. +Variable cT : type. +Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c. +Let xT := let: Pack T _ _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition eqType := @Equality.Pack cT xclass xT. +Definition choiceType := @Choice.Pack cT xclass xT. +Definition countType := @Countable.Pack cT (cnt_ xclass) xT. +Definition zmodType := @GRing.Zmodule.Pack cT xclass xT. +Definition countZmodType := @Zmodule.Pack cT xclass xT. +Definition ringType := @GRing.Ring.Pack cT xclass xT. +Definition countRingType := @Ring.Pack cT xclass xT. +Definition comRingType := @GRing.ComRing.Pack cT xclass xT. +Definition countComRingType := @ComRing.Pack cT xclass xT. +Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT. +Definition countUnitRingType := @UnitRing.Pack cT xclass xT. +Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass xT. +Definition countComUnitRingType := @ComUnitRing.Pack cT xclass xT. +Definition idomainType := @GRing.IntegralDomain.Pack cT xclass xT. +Definition countIdomainType := @IntegralDomain.Pack cT xclass xT. +Definition fieldType := @GRing.Field.Pack cT xclass xT. + +Definition join_countType := @Countable.Pack fieldType (cnt_ xclass) xT. +Definition join_countZmodType := @Zmodule.Pack fieldType xclass xT. +Definition join_countRingType := @Ring.Pack fieldType xclass xT. +Definition join_countUnitRingType := @UnitRing.Pack fieldType xclass xT. +Definition join_countComRingType := @ComRing.Pack fieldType xclass xT. +Definition join_countComUnitRingType := @ComUnitRing.Pack fieldType xclass xT. +Definition join_countIdomainType := @IntegralDomain.Pack fieldType xclass xT. + +End ClassDef. + +Module Exports. +Coercion base : class_of >-> GRing.Field.class_of. +Coercion base2 : class_of >-> IntegralDomain.class_of. +Coercion sort : type >-> Sortclass. +Bind Scope ring_scope with sort. +Coercion eqType : type >-> Equality.type. +Canonical eqType. +Coercion choiceType : type >-> Choice.type. +Canonical choiceType. +Coercion countType : type >-> Countable.type. +Canonical countType. +Coercion zmodType : type >-> GRing.Zmodule.type. +Canonical zmodType. +Coercion countZmodType : type >-> Zmodule.type. +Canonical countZmodType. +Coercion ringType : type >-> GRing.Ring.type. +Canonical ringType. +Coercion countRingType : type >-> Ring.type. +Canonical countRingType. +Coercion comRingType : type >-> GRing.ComRing.type. +Canonical comRingType. +Coercion countComRingType : type >-> ComRing.type. +Canonical countComRingType. +Coercion unitRingType : type >-> GRing.UnitRing.type. +Canonical unitRingType. +Coercion countUnitRingType : type >-> UnitRing.type. +Canonical countUnitRingType. +Coercion comUnitRingType : type >-> GRing.ComUnitRing.type. +Canonical comUnitRingType. +Coercion countComUnitRingType : type >-> ComUnitRing.type. +Canonical countComUnitRingType. +Coercion idomainType : type >-> GRing.IntegralDomain.type. +Canonical idomainType. +Coercion countIdomainType : type >-> IntegralDomain.type. +Canonical countIdomainType. +Coercion fieldType : type >-> GRing.Field.type. +Canonical fieldType. +Canonical join_countType. +Canonical join_countZmodType. +Canonical join_countRingType. +Canonical join_countComRingType. +Canonical join_countUnitRingType. +Canonical join_countComUnitRingType. +Canonical join_countIdomainType. +Notation countFieldType := CountRing.Field.type. +Notation "[ 'countFieldType' 'of' T ]" := (do_pack pack T) + (at level 0, format "[ 'countFieldType' 'of' T ]") : form_scope. +End Exports. + +End Field. +Import Field.Exports. + +Module DecidableField. + +Section ClassDef. + +Record class_of R := + Class { base : GRing.DecidableField.class_of R; mixin : mixin_of R }. +Definition base2 R (c : class_of R) := Field.Class (base c) (mixin c). +Local Coercion base : class_of >-> GRing.DecidableField.class_of. +Local Coercion base2 : class_of >-> Field.class_of. + +Structure type := Pack {sort; _ : class_of sort; _ : Type}. +Local Coercion sort : type >-> Sortclass. +Definition pack := gen_pack Pack Class GRing.DecidableField.class. +Variable cT : type. +Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c. +Let xT := let: Pack T _ _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition eqType := @Equality.Pack cT xclass xT. +Definition choiceType := @Choice.Pack cT xclass xT. +Definition countType := @Countable.Pack cT (cnt_ xclass) xT. +Definition zmodType := @GRing.Zmodule.Pack cT xclass xT. +Definition countZmodType := @Zmodule.Pack cT xclass xT. +Definition ringType := @GRing.Ring.Pack cT xclass xT. +Definition countRingType := @Ring.Pack cT xclass xT. +Definition comRingType := @GRing.ComRing.Pack cT xclass xT. +Definition countComRingType := @ComRing.Pack cT xclass xT. +Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT. +Definition countUnitRingType := @UnitRing.Pack cT xclass xT. +Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass xT. +Definition countComUnitRingType := @ComUnitRing.Pack cT xclass xT. +Definition idomainType := @GRing.IntegralDomain.Pack cT xclass xT. +Definition countIdomainType := @IntegralDomain.Pack cT xclass xT. +Definition fieldType := @GRing.Field.Pack cT xclass xT. +Definition countFieldType := @Field.Pack cT xclass xT. +Definition decFieldType := @GRing.DecidableField.Pack cT xclass xT. + +Definition join_countType := @Countable.Pack decFieldType (cnt_ xclass) xT. +Definition join_countZmodType := @Zmodule.Pack decFieldType xclass xT. +Definition join_countRingType := @Ring.Pack decFieldType xclass xT. +Definition join_countUnitRingType := @UnitRing.Pack decFieldType xclass xT. +Definition join_countComRingType := @ComRing.Pack decFieldType xclass xT. +Definition join_countComUnitRingType := + @ComUnitRing.Pack decFieldType xclass xT. +Definition join_countIdomainType := @IntegralDomain.Pack decFieldType xclass xT. +Definition join_countFieldType := @Field.Pack decFieldType xclass xT. + +End ClassDef. + +Module Exports. +Coercion base : class_of >-> GRing.DecidableField.class_of. +Coercion base2 : class_of >-> Field.class_of. +Coercion sort : type >-> Sortclass. +Bind Scope ring_scope with sort. +Coercion eqType : type >-> Equality.type. +Canonical eqType. +Coercion choiceType : type >-> Choice.type. +Canonical choiceType. +Coercion countType : type >-> Countable.type. +Canonical countType. +Coercion zmodType : type >-> GRing.Zmodule.type. +Canonical zmodType. +Coercion countZmodType : type >-> Zmodule.type. +Canonical countZmodType. +Coercion ringType : type >-> GRing.Ring.type. +Canonical ringType. +Coercion countRingType : type >-> Ring.type. +Canonical countRingType. +Coercion comRingType : type >-> GRing.ComRing.type. +Canonical comRingType. +Coercion countComRingType : type >-> ComRing.type. +Canonical countComRingType. +Coercion unitRingType : type >-> GRing.UnitRing.type. +Canonical unitRingType. +Coercion countUnitRingType : type >-> UnitRing.type. +Canonical countUnitRingType. +Coercion comUnitRingType : type >-> GRing.ComUnitRing.type. +Canonical comUnitRingType. +Coercion countComUnitRingType : type >-> ComUnitRing.type. +Canonical countComUnitRingType. +Coercion idomainType : type >-> GRing.IntegralDomain.type. +Canonical idomainType. +Coercion countIdomainType : type >-> IntegralDomain.type. +Canonical countIdomainType. +Coercion fieldType : type >-> GRing.Field.type. +Canonical fieldType. +Coercion countFieldType : type >-> Field.type. +Canonical countFieldType. +Coercion decFieldType : type >-> GRing.DecidableField.type. +Canonical decFieldType. +Canonical join_countType. +Canonical join_countZmodType. +Canonical join_countRingType. +Canonical join_countComRingType. +Canonical join_countUnitRingType. +Canonical join_countComUnitRingType. +Canonical join_countIdomainType. +Canonical join_countFieldType. +Notation countDecFieldType := CountRing.DecidableField.type. +Notation "[ 'countDecFieldType' 'of' T ]" := (do_pack pack T) + (at level 0, format "[ 'countDecFieldType' 'of' T ]") : form_scope. +End Exports. + +End DecidableField. +Import DecidableField.Exports. + +Module ClosedField. + +Section ClassDef. + +Record class_of R := + Class { base : GRing.ClosedField.class_of R; mixin : mixin_of R }. +Definition base2 R (c : class_of R) := DecidableField.Class (base c) (mixin c). +Local Coercion base : class_of >-> GRing.ClosedField.class_of. +Local Coercion base2 : class_of >-> DecidableField.class_of. + +Structure type := Pack {sort; _ : class_of sort; _ : Type}. +Local Coercion sort : type >-> Sortclass. +Definition pack := gen_pack Pack Class GRing.ClosedField.class. +Variable cT : type. +Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c. +Let xT := let: Pack T _ _ := cT in T. +Notation xclass := (class : class_of xT). + +Definition eqType := @Equality.Pack cT xclass xT. +Definition choiceType := @Choice.Pack cT xclass xT. +Definition countType := @Countable.Pack cT (cnt_ xclass) xT. +Definition zmodType := @GRing.Zmodule.Pack cT xclass xT. +Definition countZmodType := @Zmodule.Pack cT xclass xT. +Definition ringType := @GRing.Ring.Pack cT xclass xT. +Definition countRingType := @Ring.Pack cT xclass xT. +Definition comRingType := @GRing.ComRing.Pack cT xclass xT. +Definition countComRingType := @ComRing.Pack cT xclass xT. +Definition unitRingType := @GRing.UnitRing.Pack cT xclass xT. +Definition countUnitRingType := @UnitRing.Pack cT xclass xT. +Definition comUnitRingType := @GRing.ComUnitRing.Pack cT xclass xT. +Definition countComUnitRingType := @ComUnitRing.Pack cT xclass xT. +Definition idomainType := @GRing.IntegralDomain.Pack cT xclass xT. +Definition countIdomainType := @IntegralDomain.Pack cT xclass xT. +Definition fieldType := @GRing.Field.Pack cT xclass xT. +Definition countFieldType := @Field.Pack cT xclass xT. +Definition decFieldType := @GRing.DecidableField.Pack cT xclass xT. +Definition countDecFieldType := @DecidableField.Pack cT xclass xT. +Definition closedFieldType := @GRing.ClosedField.Pack cT xclass xT. + +Definition join_countType := @Countable.Pack closedFieldType (cnt_ xclass) xT. +Definition join_countZmodType := @Zmodule.Pack closedFieldType xclass xT. +Definition join_countRingType := @Ring.Pack closedFieldType xclass xT. +Definition join_countUnitRingType := @UnitRing.Pack closedFieldType xclass xT. +Definition join_countComRingType := @ComRing.Pack closedFieldType xclass xT. +Definition join_countComUnitRingType := + @ComUnitRing.Pack closedFieldType xclass xT. +Definition join_countIdomainType := + @IntegralDomain.Pack closedFieldType xclass xT. +Definition join_countFieldType := @Field.Pack closedFieldType xclass xT. +Definition join_countDecFieldType := + @DecidableField.Pack closedFieldType xclass xT. + +End ClassDef. + +Module Exports. +Coercion base : class_of >-> GRing.ClosedField.class_of. +Coercion base2 : class_of >-> DecidableField.class_of. +Coercion sort : type >-> Sortclass. +Bind Scope ring_scope with sort. +Coercion eqType : type >-> Equality.type. +Canonical eqType. +Coercion choiceType : type >-> Choice.type. +Canonical choiceType. +Coercion countType : type >-> Countable.type. +Canonical countType. +Coercion zmodType : type >-> GRing.Zmodule.type. +Canonical zmodType. +Coercion countZmodType : type >-> Zmodule.type. +Canonical countZmodType. +Coercion ringType : type >-> GRing.Ring.type. +Canonical ringType. +Coercion countRingType : type >-> Ring.type. +Canonical countRingType. +Coercion comRingType : type >-> GRing.ComRing.type. +Canonical comRingType. +Coercion countComRingType : type >-> ComRing.type. +Canonical countComRingType. +Coercion unitRingType : type >-> GRing.UnitRing.type. +Canonical unitRingType. +Coercion countUnitRingType : type >-> UnitRing.type. +Canonical countUnitRingType. +Coercion comUnitRingType : type >-> GRing.ComUnitRing.type. +Canonical comUnitRingType. +Coercion countComUnitRingType : type >-> ComUnitRing.type. +Canonical countComUnitRingType. +Coercion idomainType : type >-> GRing.IntegralDomain.type. +Canonical idomainType. +Coercion fieldType : type >-> GRing.Field.type. +Canonical fieldType. +Coercion countFieldType : type >-> Field.type. +Canonical countFieldType. +Coercion decFieldType : type >-> GRing.DecidableField.type. +Canonical decFieldType. +Coercion countDecFieldType : type >-> DecidableField.type. +Canonical countDecFieldType. +Coercion closedFieldType : type >-> GRing.ClosedField.type. +Canonical closedFieldType. +Canonical join_countType. +Canonical join_countZmodType. +Canonical join_countRingType. +Canonical join_countComRingType. +Canonical join_countUnitRingType. +Canonical join_countComUnitRingType. +Canonical join_countIdomainType. +Canonical join_countFieldType. +Canonical join_countDecFieldType. +Notation countClosedFieldType := CountRing.ClosedField.type. +Notation "[ 'countClosedFieldType' 'of' T ]" := (do_pack pack T) + (at level 0, format "[ 'countClosedFieldType' 'of' T ]") : form_scope. +End Exports. + +End ClosedField. +Import ClosedField.Exports. + +End CountRing. + +Import CountRing. +Export Zmodule.Exports Ring.Exports ComRing.Exports UnitRing.Exports. +Export ComUnitRing.Exports IntegralDomain.Exports. +Export Field.Exports DecidableField.Exports ClosedField.Exports. + +Require Import poly polydiv generic_quotient ring_quotient. +Require Import mxpoly polyXY. +Import GRing.Theory. +Require Import closed_field. + +Canonical Zp_countZmodType m := [countZmodType of 'I_m.+1]. +Canonical Zp_countRingType m := [countRingType of 'I_m.+2]. +Canonical Zp_countComRingType m := [countComRingType of 'I_m.+2]. +Canonical Zp_countUnitRingType m := [countUnitRingType of 'I_m.+2]. +Canonical Zp_countComUnitRingType m := [countComUnitRingType of 'I_m.+2]. +Canonical Fp_countIdomainType p := [countIdomainType of 'F_p]. +Canonical Fp_countFieldType p := [countFieldType of 'F_p]. +Canonical Fp_countDecFieldType p := [countDecFieldType of 'F_p]. + +Canonical matrix_countZmodType (M : countZmodType) m n := + [countZmodType of 'M[M]_(m, n)]. +Canonical matrix_countRingType (R : countRingType) n := + [countRingType of 'M[R]_n.+1]. +Canonical matrix_countUnitRingType (R : countComUnitRingType) n := + [countUnitRingType of 'M[R]_n.+1]. + +Definition poly_countMixin (R : countRingType) := + [countMixin of polynomial R by <:]. +Canonical polynomial_countType R := CountType _ (poly_countMixin R). +Canonical poly_countType (R : countRingType) := [countType of {poly R}]. +Canonical polynomial_countZmodType (R : countRingType) := + [countZmodType of polynomial R]. +Canonical poly_countZmodType (R : countRingType) := [countZmodType of {poly R}]. +Canonical polynomial_countRingType (R : countRingType) := + [countRingType of polynomial R]. +Canonical poly_countRingType (R : countRingType) := [countRingType of {poly R}]. +Canonical polynomial_countComRingType (R : countComRingType) := + [countComRingType of polynomial R]. +Canonical poly_countComRingType (R : countComRingType) := + [countComRingType of {poly R}]. +Canonical polynomial_countUnitRingType (R : countIdomainType) := + [countUnitRingType of polynomial R]. +Canonical poly_countUnitRingType (R : countIdomainType) := + [countUnitRingType of {poly R}]. +Canonical polynomial_countComUnitRingType (R : countIdomainType) := + [countComUnitRingType of polynomial R]. +Canonical poly_countComUnitRingType (R : countIdomainType) := + [countComUnitRingType of {poly R}]. +Canonical polynomial_countIdomainType (R : countIdomainType) := + [countIdomainType of polynomial R]. +Canonical poly_countIdomainType (R : countIdomainType) := + [countIdomainType of {poly R}]. + +Canonical int_countZmodType := [countZmodType of int]. +Canonical int_countRingType := [countRingType of int]. +Canonical int_countComRingType := [countComRingType of int]. +Canonical int_countUnitRingType := [countUnitRingType of int]. +Canonical int_countComUnitRingType := [countComUnitRingType of int]. +Canonical int_countIdomainType := [countIdomainType of int]. + +Canonical rat_countZmodType := [countZmodType of rat]. +Canonical rat_countRingType := [countRingType of rat]. +Canonical rat_countComRingType := [countComRingType of rat]. +Canonical rat_countUnitRingType := [countUnitRingType of rat]. +Canonical rat_countComUnitRingType := [countComUnitRingType of rat]. +Canonical rat_countIdomainType := [countIdomainType of rat]. +Canonical rat_countFieldType := [countFieldType of rat]. + +Lemma countable_field_extension (F : countFieldType) (p : {poly F}) : + size p > 1 -> + {E : countFieldType & {FtoE : {rmorphism F -> E} & + {w : E | root (map_poly FtoE p) w + & forall u : E, exists q, u = (map_poly FtoE q).[w]}}}. +Proof. +pose fix d i := + if i is i1.+1 then + let d1 := oapp (gcdp (d i1)) 0 (unpickle i1) in + if size d1 > 1 then d1 else d i1 + else p. +move=> p_gt1; have sz_d i: size (d i) > 1 by elim: i => //= i IHi; case: ifP. +have dv_d i j: i <= j -> d j %| d i. + move/subnK <-; elim: {j}(j - i)%N => //= j IHj; case: ifP => //=. + case: (unpickle _) => /= [q _|]; last by rewrite size_poly0. + exact: dvdp_trans (dvdp_gcdl _ _) IHj. +pose I : pred {poly F} := [pred q | d (pickle q).+1 %| q]. +have I'co q i: q \notin I -> i > pickle q -> coprimep q (d i). + rewrite inE => I'q /dv_d/coprimep_dvdl-> //; apply: contraR I'q. + rewrite coprimep_sym /coprimep /= pickleK /= neq_ltn. + case: ifP => [_ _| ->]; first exact: dvdp_gcdr. + rewrite orbF ltnS leqn0 size_poly_eq0 gcdp_eq0 -size_poly_eq0. + by rewrite -leqn0 leqNgt ltnW //. +have memI q: reflect (exists i, d i %| q) (q \in I). + apply: (iffP idP) => [|[i dv_di_q]]; first by exists (pickle q).+1. + have [le_i_q | /I'co i_co_q] := leqP i (pickle q). + rewrite inE /= pickleK /=; case: ifP => _; first exact: dvdp_gcdr. + exact: dvdp_trans (dv_d _ _ le_i_q) dv_di_q. + apply: contraR i_co_q _. + by rewrite /coprimep (eqp_size (dvdp_gcd_idr dv_di_q)) neq_ltn sz_d orbT. +have I_ideal : idealr_closed I. + split=> [||a q1 q2 Iq1 Iq2]; first exact: dvdp0. + by apply/memI=> [[i /idPn[]]]; rewrite dvdp1 neq_ltn sz_d orbT. + apply/memI; exists (maxn (pickle q1).+1 (pickle q2).+1); apply: dvdp_add. + by apply: dvdp_mull; apply: dvdp_trans Iq1; apply/dv_d/leq_maxl. + by apply: dvdp_trans Iq2; apply/dv_d/leq_maxr. +pose Iaddkey := GRing.Pred.Add (DefaultPredKey I) I_ideal. +pose Iidkey := MkIdeal (GRing.Pred.Zmod Iaddkey I_ideal) I_ideal. +pose E := ComRingType _ (@Quotient.mulqC _ _ _ (KeyedPred Iidkey)). +pose PtoE : {rmorphism {poly F} -> E} := [rmorphism of \pi_E%qT : {poly F} -> E]. +have PtoEd i: PtoE (d i) = 0. + by apply/eqP; rewrite piE Quotient.equivE subr0; apply/memI; exists i. +pose Einv (z : E) (q := repr z) (dq := d (pickle q).+1) := + let q_unitP := Bezout_eq1_coprimepP q dq in + if q_unitP is ReflectT ex_uv then PtoE (sval (sig_eqW ex_uv)).1 else 0. +have Einv0: Einv 0 = 0. + rewrite /Einv; case: Bezout_eq1_coprimepP => // ex_uv. + case/negP: (oner_neq0 E); rewrite piE -[_ 1]/(PtoE 1); have [uv <-] := ex_uv. + by rewrite rmorphD !rmorphM PtoEd /= reprK !mulr0 addr0. +have EmulV: GRing.Field.axiom Einv. + rewrite /Einv=> z nz_z; case: Bezout_eq1_coprimepP => [ex_uv |]; last first. + move/Bezout_eq1_coprimepP; rewrite I'co //. + by rewrite piE -{1}[z]reprK -Quotient.idealrBE subr0 in nz_z. + apply/eqP; case: sig_eqW => {ex_uv} [uv uv1]; set i := _.+1 in uv1 *. + rewrite piE /= -[z]reprK -(rmorphM PtoE) -Quotient.idealrBE. + by rewrite -uv1 opprD addNKr -mulNr; apply/memI; exists i; exact: dvdp_mull. +pose EringU := [comUnitRingType of UnitRingType _ (FieldUnitMixin EmulV Einv0)]. +have Eunitf := @FieldMixin _ _ EmulV Einv0. +pose Efield := FieldType (IdomainType EringU (FieldIdomainMixin Eunitf)) Eunitf. +pose Ecount := CountType Efield (CanCountMixin (@reprK _ _)). +pose FtoE := [rmorphism of PtoE \o polyC]; pose w : E := PtoE 'X. +have defPtoE q: (map_poly FtoE q).[w] = PtoE q. + by rewrite map_poly_comp horner_map [_.['X]]comp_polyXr. +exists [countFieldType of Ecount], FtoE, w => [|u]. + by rewrite /root defPtoE (PtoEd 0%N). +by exists (repr u); rewrite defPtoE /= reprK. +Qed. + +Lemma countable_algebraic_closure (F : countFieldType) : + {K : countClosedFieldType & {FtoK : {rmorphism F -> K} | integralRange FtoK}}. +Proof. +pose minXp (R : ringType) (p : {poly R}) := if size p > 1 then p else 'X. +have minXp_gt1 R p: size (minXp R p) > 1. + by rewrite /minXp; case: ifP => // _; rewrite size_polyX. +have minXpE (R : ringType) (p : {poly R}) : size p > 1 -> minXp R p = p. + by rewrite /minXp => ->. +have ext1 p := countable_field_extension (minXp_gt1 _ p). +pose ext1fT E p := tag (ext1 E p). +pose ext1to E p : {rmorphism _ -> ext1fT E p} := tag (tagged (ext1 E p)). +pose ext1w E p : ext1fT E p := s2val (tagged (tagged (ext1 E p))). +have ext1root E p: root (map_poly (ext1to E p) (minXp E p)) (ext1w E p). + by rewrite /ext1w; case: (tagged (tagged (ext1 E p))). +have ext1gen E p u: {q | u = (map_poly (ext1to E p) q).[ext1w E p]}. + by apply: sig_eqW; rewrite /ext1w; case: (tagged (tagged (ext1 E p))) u. +pose pExtEnum (E : countFieldType) := nat -> {poly E}. +pose Ext := {E : countFieldType & pExtEnum E}; pose MkExt : Ext := Tagged _ _. +pose EtoInc (E : Ext) i := ext1to (tag E) (tagged E i). +pose incEp E i j := + let v := map_poly (EtoInc E i) (tagged E j) in + if decode j is [:: i1; k] then + if i1 == i then odflt v (unpickle k) else v + else v. +pose fix E_ i := if i is i1.+1 then MkExt _ (incEp (E_ i1) i1) else MkExt F \0. +pose E i := tag (E_ i); pose Krep := {i : nat & E i}. +pose fix toEadd i k : {rmorphism E i -> E (k + i)%N} := + if k is k1.+1 then [rmorphism of EtoInc _ (k1 + i)%N \o toEadd _ _] + else [rmorphism of idfun]. +pose toE i j (le_ij : i <= j) := + ecast j {rmorphism E i -> E j} (subnK le_ij) (toEadd i (j - i)%N). +have toEeq i le_ii: toE i i le_ii =1 id. + by rewrite /toE; move: (subnK _); rewrite subnn => ?; rewrite eq_axiomK. +have toEleS i j leij leiSj z: toE i j.+1 leiSj z = EtoInc _ _ (toE i j leij z). + rewrite /toE; move: (j - i)%N {leij leiSj}(subnK _) (subnK _) => k. + by case: j /; rewrite (addnK i k.+1) => eq_kk; rewrite [eq_kk]eq_axiomK. +have toEirr := congr1 ((toE _ _)^~ _) (bool_irrelevance _ _). +have toEtrans j i k leij lejk leik z: + toE i k leik z = toE j k lejk (toE i j leij z). +- elim: k leik lejk => [|k IHk] leiSk lejSk. + by case: j => // in leij lejSk *; rewrite toEeq. + have:= lejSk; rewrite {1}leq_eqVlt ltnS => /predU1P[Dk | lejk]. + by rewrite -Dk in leiSk lejSk *; rewrite toEeq. + by have leik := leq_trans leij lejk; rewrite !toEleS -IHk. +have [leMl leMr] := (leq_maxl, leq_maxr); pose le_max := (leq_max, leqnn, orbT). +pose pairK (x y : Krep) (m := maxn _ _) := + (toE _ m (leMl _ _) (tagged x), toE _ m (leMr _ _) (tagged y)). +pose eqKrep x y := prod_curry (@eq_op _) (pairK x y). +have eqKrefl : reflexive eqKrep by move=> z; apply/eqP; apply: toEirr. +have eqKsym : symmetric eqKrep. + move=> z1 z2; rewrite {1}/eqKrep /= eq_sym; move: (leMl _ _) (leMr _ _). + by rewrite maxnC => lez1m lez2m; congr (_ == _); apply: toEirr. +have eqKtrans : transitive eqKrep. + rewrite /eqKrep /= => z2 z1 z3 /eqP eq_z12 /eqP eq_z23. + rewrite -(inj_eq (fmorph_inj (toE _ _ (leMr (tag z2) _)))). + rewrite -!toEtrans ?le_max // maxnCA maxnA => lez3m lez1m. + rewrite {lez1m}(toEtrans (maxn (tag z1) (tag z2))) // {}eq_z12. + do [rewrite -toEtrans ?le_max // -maxnA => lez2m] in lez3m *. + by rewrite (toEtrans (maxn (tag z2) (tag z3))) // eq_z23 -toEtrans. +pose K := {eq_quot (EquivRel _ eqKrefl eqKsym eqKtrans)}%qT. +have cntK : Countable.mixin_of K := CanCountMixin (@reprK _ _). +pose EtoKrep i (x : E i) : K := \pi%qT (Tagged E x). +have [EtoK piEtoK]: {EtoK | forall i, EtoKrep i =1 EtoK i} by exists EtoKrep. +pose FtoK := EtoK 0%N; rewrite {}/EtoKrep in piEtoK. +have eqEtoK i j x y: + toE i _ (leMl i j) x = toE j _ (leMr i j) y -> EtoK i x = EtoK j y. +- by move/eqP=> eq_xy; rewrite -!piEtoK; apply/eqmodP. +have toEtoK j i leij x : EtoK j (toE i j leij x) = EtoK i x. + by apply: eqEtoK; rewrite -toEtrans. +have EtoK_0 i: EtoK i 0 = FtoK 0 by apply: eqEtoK; rewrite !rmorph0. +have EtoK_1 i: EtoK i 1 = FtoK 1 by apply: eqEtoK; rewrite !rmorph1. +have EtoKeq0 i x: (EtoK i x == FtoK 0) = (x == 0). + by rewrite /FtoK -!piEtoK eqmodE /= /eqKrep /= rmorph0 fmorph_eq0. +have toErepr m i leim x lerm: + toE _ m lerm (tagged (repr (EtoK i x))) = toE i m leim x. +- have: (Tagged E x == repr (EtoK i x) %[mod K])%qT by rewrite reprK piEtoK. + rewrite eqmodE /= /eqKrep; case: (repr _) => j y /= in lerm * => /eqP /=. + have leijm: maxn i j <= m by rewrite geq_max leim. + by move/(congr1 (toE _ _ leijm)); rewrite -!toEtrans. +pose Kadd (x y : K) := EtoK _ (prod_curry +%R (pairK (repr x) (repr y))). +pose Kopp (x : K) := EtoK _ (- tagged (repr x)). +pose Kmul (x y : K) := EtoK _ (prod_curry *%R (pairK (repr x) (repr y))). +pose Kinv (x : K) := EtoK _ (tagged (repr x))^-1. +have EtoK_D i: {morph EtoK i : x y / x + y >-> Kadd x y}. + move=> x y; apply: eqEtoK; set j := maxn (tag _) _; rewrite !rmorphD. + by rewrite -!toEtrans ?le_max // => lexm leym; rewrite !toErepr. +have EtoK_N i: {morph EtoK i : x / - x >-> Kopp x}. + by move=> x; apply: eqEtoK; set j := tag _; rewrite !rmorphN toErepr. +have EtoK_M i: {morph EtoK i : x y / x * y >-> Kmul x y}. + move=> x y; apply: eqEtoK; set j := maxn (tag _) _; rewrite !rmorphM. + by rewrite -!toEtrans ?le_max // => lexm leym; rewrite !toErepr. +have EtoK_V i: {morph EtoK i : x / x^-1 >-> Kinv x}. + by move=> x; apply: eqEtoK; set j := tag _; rewrite !fmorphV toErepr. +case: {toErepr}I in (Kadd) (Kopp) (Kmul) (Kinv) EtoK_D EtoK_N EtoK_M EtoK_V. +pose inEi i z := {x : E i | z = EtoK i x}; have KtoE z: {i : nat & inEi i z}. + by elim/quotW: z => [[i x] /=]; exists i, x; rewrite piEtoK. +have inEle i j z: i <= j -> inEi i z -> inEi j z. + by move=> leij [x ->]; exists (toE i j leij x); rewrite toEtoK. +have KtoE2 z1 z2: {i : nat & inEi i z1 & inEi i z2}. + have [[i1 Ez1] [i2 Ez2]] := (KtoE z1, KtoE z2). + by exists (maxn i1 i2); [apply: inEle Ez1 | apply: inEle Ez2]. +have KtoE3 z1 z2 z3: {i : nat & inEi i z1 & inEi i z2 * inEi i z3}%type. + have [[i1 Ez1] [i2 Ez2 Ez3]] := (KtoE z1, KtoE2 z2 z3). + by exists (maxn i1 i2); [apply: inEle Ez1 | split; apply: inEle (leMr _ _) _]. +have KaddC: commutative Kadd. + by move=> u v; have [i [x ->] [y ->]] := KtoE2 u v; rewrite -!EtoK_D addrC. +have KaddA: associative Kadd. + move=> u v w; have [i [x ->] [[y ->] [z ->]]] := KtoE3 u v w. + by rewrite -!EtoK_D addrA. +have Kadd0: left_id (FtoK 0) Kadd. + by move=> u; have [i [x ->]] := KtoE u; rewrite -(EtoK_0 i) -EtoK_D add0r. +have KaddN: left_inverse (FtoK 0) Kopp Kadd. + by move=> u; have [i [x ->]] := KtoE u; rewrite -EtoK_N -EtoK_D addNr EtoK_0. +pose Kzmod := ZmodType K (ZmodMixin KaddA KaddC Kadd0 KaddN). +have KmulC: commutative Kmul. + by move=> u v; have [i [x ->] [y ->]] := KtoE2 u v; rewrite -!EtoK_M mulrC. +have KmulA: @associative Kzmod Kmul. + move=> u v w; have [i [x ->] [[y ->] [z ->]]] := KtoE3 u v w. + by rewrite -!EtoK_M mulrA. +have Kmul1: left_id (FtoK 1) Kmul. + by move=> u; have [i [x ->]] := KtoE u; rewrite -(EtoK_1 i) -EtoK_M mul1r. +have KmulD: left_distributive Kmul Kadd. + move=> u v w; have [i [x ->] [[y ->] [z ->]]] := KtoE3 u v w. + by rewrite -!(EtoK_M, EtoK_D) mulrDl. +have Kone_nz: FtoK 1 != FtoK 0 by rewrite EtoKeq0 oner_neq0. +pose KringMixin := ComRingMixin KmulA KmulC Kmul1 KmulD Kone_nz. +pose Kring := ComRingType (RingType Kzmod KringMixin) KmulC. +have KmulV: @GRing.Field.axiom Kring Kinv. + move=> u; have [i [x ->]] := KtoE u; rewrite EtoKeq0 => nz_x. + by rewrite -EtoK_V -[_ * _]EtoK_M mulVf ?EtoK_1. +have Kinv0: Kinv (FtoK 0) = FtoK 0 by rewrite -EtoK_V invr0. +pose Kuring := [comUnitRingType of UnitRingType _ (FieldUnitMixin KmulV Kinv0)]. +pose KfieldMixin := @FieldMixin _ _ KmulV Kinv0. +pose Kidomain := IdomainType Kuring (FieldIdomainMixin KfieldMixin). +pose Kfield := FieldType Kidomain KfieldMixin. +have EtoKrmorphism i: rmorphism (EtoK i : E i -> Kfield). + by do 2?split=> [x y|]; rewrite ?EtoK_D ?EtoK_N ?EtoK_M ?EtoK_1. +pose EtoKM := RMorphism (EtoKrmorphism _); have EtoK_E: EtoK _ = EtoKM _ by []. +have toEtoKp := @eq_map_poly _ Kring _ _(toEtoK _ _ _). +have Kclosed: GRing.ClosedField.axiom Kfield. + move=> n pK n_gt0; pose m0 := \max_(i < n) tag (KtoE (pK i)); pose m := m0.+1. + have /fin_all_exists[pE DpE] (i : 'I_n): exists y, EtoK m y = pK i. + pose u := KtoE (pK i); have leum0: tag u <= m0 by rewrite (bigmax_sup i). + by have [y ->] := tagged u; exists (toE _ _ (leqW leum0) y); rewrite toEtoK. + pose p := 'X^n - rVpoly (\row_i pE i); pose j := code [:: m0; pickle p]. + pose pj := tagged (E_ j) j; pose w : E j.+1 := ext1w (E j) pj. + have lemj: m <= j by rewrite (allP (ltn_code _)) ?mem_head. + exists (EtoKM j.+1 w); apply/eqP; rewrite -subr_eq0; apply/eqP. + transitivity (EtoKM j.+1 (map_poly (toE m j.+1 (leqW lemj)) p).[w]). + rewrite -horner_map -map_poly_comp toEtoKp EtoK_E; move/EtoKM: w => w. + rewrite rmorphB [_ 'X^n]map_polyXn !hornerE hornerXn; congr (_ - _ : Kring). + rewrite (@horner_coef_wide _ n) ?size_map_poly ?size_poly //. + by apply: eq_bigr => i _; rewrite coef_map coef_rVpoly valK mxE /= DpE. + suffices Dpj: map_poly (toE m j lemj) p = pj. + apply/eqP; rewrite EtoKeq0 (eq_map_poly (toEleS _ _ _ _)) map_poly_comp Dpj. + rewrite -rootE -[pj]minXpE ?ext1root // -Dpj size_map_poly. + by rewrite size_addl ?size_polyXn ltnS ?size_opp ?size_poly. + rewrite {w}/pj; elim: {-9}j lemj => // k IHk lemSk. + move: lemSk (lemSk); rewrite {1}leq_eqVlt ltnS => /predU1P[<- | lemk] lemSk. + rewrite {k IHk lemSk}(eq_map_poly (toEeq m _)) map_poly_id //= /incEp. + by rewrite codeK eqxx pickleK. + rewrite (eq_map_poly (toEleS _ _ _ _)) map_poly_comp {}IHk //= /incEp codeK. + by rewrite -if_neg neq_ltn lemk. +suffices{Kclosed} algF_K: {FtoK : {rmorphism F -> Kfield} | integralRange FtoK}. + pose Kdec := DecFieldType Kfield (closed_fields_QEMixin Kclosed). + pose KclosedField := ClosedFieldType Kdec Kclosed. + by exists [countClosedFieldType of CountType KclosedField cntK]. +exists (EtoKM 0%N) => /= z; have [i [{z}z ->]] := KtoE z. +suffices{z} /(_ z)[p mon_p]: integralRange (toE 0%N i isT). + by rewrite -(fmorph_root (EtoKM i)) -map_poly_comp toEtoKp; exists p. +rewrite /toE /E; clear - minXp_gt1 ext1root ext1gen. +move: (i - 0)%N (subnK _) => n; case: i /. +elim: n => [|n IHn] /= z; first exact: integral_id. +have{z} [q ->] := ext1gen _ _ z; set pn := tagged (E_ _) _. +apply: integral_horner. + by apply/integral_poly=> i; rewrite coef_map; apply: integral_rmorph. +apply: integral_root (ext1root _ _) _. + by rewrite map_poly_eq0 -size_poly_gt0 ltnW. +by apply/integral_poly=> i; rewrite coef_map; apply: integral_rmorph. +Qed. |
