diff options
| author | Cyril Cohen | 2017-11-23 16:33:36 +0100 |
|---|---|---|
| committer | Cyril Cohen | 2018-02-06 13:54:37 +0100 |
| commit | fafd4dac5315e1d4e071b0044a50a16360b31964 (patch) | |
| tree | 5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/field/closed_field.v | |
| parent | 835467324db450c8fb8971e477cc4d82fa3e861b (diff) | |
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/field/closed_field.v')
| -rw-r--r-- | mathcomp/field/closed_field.v | 58 |
1 files changed, 29 insertions, 29 deletions
diff --git a/mathcomp/field/closed_field.v b/mathcomp/field/closed_field.v index 8a2e304..05cf477 100644 --- a/mathcomp/field/closed_field.v +++ b/mathcomp/field/closed_field.v @@ -98,9 +98,9 @@ rewrite -cons_poly_def /lift polyseq_cons /nilp. case pn0: (_ == _) => /=; last by move->; rewrite -cons_poly_def. move=> _; rewrite polyseqC. case c0: (_==_)=> /=. - move: pn0; rewrite (eqP c0) size_poly_eq0; move/eqP->. - by apply:val_inj=> /=; rewrite polyseq_cons // polyseq0. -by rewrite mul0r add0r; apply:val_inj=> /=; rewrite polyseq_cons // /nilp pn0. + move: pn0; rewrite (eqP c0) size_poly_eq0; move/eqP->. + by apply: val_inj=> /=; rewrite polyseq_cons // polyseq0. +by rewrite mul0r add0r; apply: val_inj=> /=; rewrite polyseq_cons // /nilp pn0. Qed. Fixpoint lead_coefT (k : term F -> fF) p := @@ -181,11 +181,11 @@ Qed. Lemma rpoly_map_mul (t : term F) (p : polyF) (rt : rterm t) : rpoly (map (Mul t) p) = rpoly p. -Proof. +Proof. by rewrite /rpoly all_map /= (@eq_all _ _ (@rterm _)) // => x; rewrite /= rt. Qed. -Lemma rmulpT (p q : polyF) : rpoly p -> rpoly q -> rpoly (mulpT p q). +Lemma rmulpT (p q : polyF) : rpoly p -> rpoly q -> rpoly (mulpT p q). Proof. elim: p q=> [|a p ihp] q rp rq //=; move: rp; case/andP=> ra rp /=. apply: rsumpT; last exact: ihp. @@ -206,7 +206,7 @@ Lemma eval_natmulpT (p : polyF) (n : nat) (e : seq F) : eval_poly e (natmulpT n p) = (eval_poly e p) *+ n. Proof. elim: p; rewrite //= ?mul0rn // => c p ->. -rewrite mulrnDl mulr_natl polyC_muln; congr (_+_). +rewrite mulrnDl mulr_natl polyC_muln; congr (_+_). by rewrite -mulr_natl mulrAC -mulrA mulr_natl mulrC. Qed. @@ -245,16 +245,16 @@ move=> Pk q sq cq c qq r n e /=. elim: n c qq r k Pk e => [|n Pn] c qq r k Pk e; rewrite sizeTP. case ltrq : (_ < _); first by rewrite /= ltrq /= -Pk. rewrite lead_coefTP => [|a p]; rewrite Pk. - rewrite ?(eval_mulpT,eval_amulXnT,eval_sumpT,eval_opppT) //=. + rewrite ?(eval_mulpT,eval_amulXnT,eval_sumpT,eval_opppT) //=. by rewrite ltrq //= mul_polyC ?(mul0r,add0r). by symmetry; rewrite Pk ?(eval_mulpT,eval_amulXnT,eval_sumpT, eval_opppT). case ltrq : (_<_); first by rewrite /= ltrq Pk. rewrite lead_coefTP. - rewrite Pn ?(eval_mulpT,eval_amulXnT,eval_sumpT,eval_opppT) //=. + rewrite Pn ?(eval_mulpT,eval_amulXnT,eval_sumpT,eval_opppT) //=. by rewrite ltrq //= mul_polyC ?(mul0r,add0r). rewrite -/redivp_rec_loopT => x e'. -rewrite Pn; last by move=>*; rewrite Pk. -symmetry; rewrite Pn; last by move=>*; rewrite Pk. +rewrite Pn; last by move=> *; rewrite Pk. +symmetry; rewrite Pn; last by move=> *; rewrite Pk. rewrite Pk ?(eval_lift,eval_mulpT,eval_amulXnT,eval_sumpT,eval_opppT). by rewrite mul_polyC ?(mul0r,add0r). Qed. @@ -267,7 +267,7 @@ Lemma redivp_rec_loopT_qf (q : polyF) (sq : nat) (cq : term F) Proof. elim: n q sq cq k c qq r => [|n ihn] q sq cq k c qq r kP rq rcq rqq rr. apply: sizeT_qf=> // n; case: (_ < _); first by apply: kP; rewrite // rqq rr. - apply: lead_coefT_qf=> // l rl; apply: kP. + apply: lead_coefT_qf=> // l rl; apply: kP. by rewrite /= ?(rsumpT,rmulpT,ramulXnT,rpoly_map_mul) //= rcq. apply: sizeT_qf=> // m; case: (_ < _); first by apply: kP => //=; rewrite rqq rr. apply: lead_coefT_qf=> // l rl; apply: ihn; rewrite //= ?rcq //. @@ -290,7 +290,7 @@ Definition redivpT (p : polyF) (k : nat * polyF * polyF -> fF) Lemma redivp_rec_loopP (q : {poly F}) (c : nat) (qq r : {poly F}) (n : nat) : redivp_rec q c qq r n = redivp_rec_loop q (size q) (lead_coef q) c qq r n. -Proof. by elim: n c qq r => [| n Pn] c qq r //=; rewrite Pn. Qed. +Proof. by elim: n c qq r => [| n Pn] c qq r //=; rewrite Pn. Qed. Lemma redivpTP (k : nat * polyF * polyF -> formula F) : (forall c qq r e, @@ -346,12 +346,12 @@ Lemma rgcdp_loopP (k : polyF -> formula F) : Proof. move=> Pk n p q e. elim: n p q e => /= [| m Pm] p q e. - rewrite redivpTP; last by move=>*; rewrite !isnullP eval_lift. + rewrite redivpTP; last by move=> *; rewrite !isnullP eval_lift. rewrite isnullP eval_lift; case: (_ == 0); first by rewrite Pk. - by rewrite redivpTP; last by move=>*; rewrite Pk. -rewrite redivpTP; last by move=>*; rewrite !isnullP eval_lift. + by rewrite redivpTP; last by move=> *; rewrite Pk. +rewrite redivpTP; last by move=> *; rewrite !isnullP eval_lift. rewrite isnullP eval_lift; case: (_ == 0); first by rewrite Pk. -by rewrite redivpTP; move=>*; rewrite ?Pm !eval_lift. +by rewrite redivpTP => - *; rewrite ?Pm !eval_lift. Qed. Lemma rgcdp_loopT_qf (p : polyF) (k : polyF -> formula F) (q : polyF) (n : nat) : @@ -371,16 +371,16 @@ Definition rgcdpT (p : polyF) k (q : polyF) : fF := (fun b => if b then (k q1) else (sizeT (fun n => (rgcdp_loopT p1 k n q1)) p1)) p1 - in (lt_sizeT (fun b => if b then (aux q k p) else (aux p k q)) p q). + in (lt_sizeT (fun b => if b then (aux q k p) else (aux p k q)) p q). Lemma rgcdpTP (k : seq (term F) -> formula F) : (forall p e, qf_eval e (k p) = qf_eval e (k (lift (eval_poly e p)))) -> forall p q e, qf_eval e (rgcdpT p k q) = qf_eval e (k (lift (rgcdp (eval_poly e p) (eval_poly e q)))). Proof. -move=> Pk p q e; rewrite /rgcdpT !sizeTP; case lqp: (_ < _). +move=> Pk p q e; rewrite /rgcdpT !sizeTP; case lqp: (_ < _). rewrite isnullP; case q0: (_ == _); first by rewrite Pk (eqP q0) rgcdp0. - rewrite sizeTP rgcdp_loopP => [|e' p']; last by rewrite Pk. + rewrite sizeTP rgcdp_loopP => [|e' p']; last by rewrite Pk. by rewrite /rgcdp lqp q0. rewrite isnullP; case p0: (_ == _); first by rewrite Pk (eqP p0) rgcd0p. rewrite sizeTP rgcdp_loopP => [|e' p']; last by rewrite Pk. @@ -391,7 +391,7 @@ Lemma rgcdpT_qf (p : polyF) (k : polyF -> formula F) (q : polyF) : (forall r, rpoly r -> qf (k r)) -> rpoly p -> rpoly q -> qf (rgcdpT p k q). Proof. move=> kP rp rq; apply: sizeT_qf=> // n; apply: sizeT_qf=> // m. -by case:(_ < _); +by case: (_ < _); apply: isnull_qf=> //; case; do ?apply: kP=> //; apply: sizeT_qf=> // n'; apply: rgcdp_loopT_qf. Qed. @@ -467,7 +467,7 @@ Proof. by move=> *; rewrite sizeTP rgdcop_recTP 1?Pk. Qed. Lemma rgdcopT_qf (p : polyF) (k : polyF -> formula F) (q : polyF) : (forall r, rpoly r -> qf (k r)) -> rpoly p -> rpoly q -> qf (rgdcopT p k q). -Proof. +Proof. by move=> kP rp rq; apply: sizeT_qf => // n; apply: rgdcop_recT_qf. Qed. @@ -505,16 +505,16 @@ Lemma abstrXP (i : nat) (t : term F) (e : seq F) (x : F) : rterm t -> (eval_poly e (abstrX i t)).[x] = eval (set_nth 0 e i x) t. Proof. elim: t => [n | r | n | t tP s sP | t tP | t tP n | t tP s sP | t tP | t tP n] h. -- move=> /=; case ni: (_ == _); +- move=> /=; case ni: (_ == _); rewrite //= ?(mul0r,add0r,addr0,polyC1,mul1r,hornerX,hornerC); by rewrite // nth_set_nth /= ni. - by rewrite /= mul0r add0r hornerC. - by rewrite /= mul0r add0r hornerC. -- by case/andP: h => *; rewrite /= eval_sumpT hornerD tP ?sP. +- by case/andP: h => *; rewrite /= eval_sumpT hornerD tP ?sP. - by rewrite /= eval_opppT hornerN tP. - by rewrite /= eval_natmulpT hornerMn tP. - by case/andP: h => *; rewrite /= eval_mulpT hornerM tP ?sP. -- by []. +- by []. - elim: n h => [|n ihn] rt; first by rewrite /= expr0 mul0r add0r hornerC. by rewrite /= eval_mulpT exprSr hornerM ihn // mulrC tP. Qed. @@ -576,7 +576,7 @@ Proof. move=> e i x; elim=> [|p ps ihps] //=. case/andP=> rp rps; rewrite rootE abstrXP //. constructor; first by case=> -> hps; rewrite eqxx /=; apply/ihps. -by case/andP; move/eqP=> -> psr; split=> //; apply/ihps. +by case/andP; move/eqP=> -> psr; split=> //; apply/ihps. Qed. Lemma holds_conjn (e : seq F) (i : nat) (x : F) (ps : seq (term F)) : @@ -587,10 +587,10 @@ Proof. elim: ps => [|p ps ihps] //=. case/andP=> rp rps; rewrite rootE abstrXP //. constructor; first by case=> /eqP-> hps /=; apply/ihps. -by case/andP=> pr psr; split; first apply/eqP=> //; apply/ihps. +by case/andP=> pr psr; split; first apply/eqP=> //; apply/ihps. Qed. -Lemma holds_ex_elim : GRing.valid_QE_proj ex_elim. +Lemma holds_ex_elim: GRing.valid_QE_proj ex_elim. Proof. move=> i [ps qs] /= e; case/andP=> /= rps rqs. rewrite ex_elim_seqP big_map. @@ -616,7 +616,7 @@ case g0: (\big[(@rgcdp F)/0%:P]_(j <- map (eval_poly e \o abstrX i) ps) j == 0). exists x; do 2?constructor=> //; last by apply/holds_conjn. apply/holds_conj; rewrite //= -root_biggcd. by rewrite (eqp_root (aux _ _ _ )) (eqP g0) root0. -apply:(iffP (closed_rootP axiom _)); case=> x Px; exists x; move:Px => //=. +apply: (iffP (closed_rootP axiom _)); case=> x Px; exists x; move: Px => //=. rewrite (eqp_root (eqp_rgdco_gdco _ _)) root_gdco ?g0 //. rewrite -(eqp_root (aux _ _ _ )) root_biggcd abstrX_bigmul eval_bigmul. rewrite -bigmap_id root_bigmul; case/andP=> psr qsr. @@ -629,7 +629,7 @@ constructor; first by apply/holds_conj. by apply/holds_conjn. Qed. -Lemma wf_ex_elim : GRing.wf_QE_proj ex_elim. +Lemma wf_ex_elim: GRing.wf_QE_proj ex_elim. Proof. by move=> i bc /= rbc; apply: ex_elim_qf. Qed. Definition closed_fields_QEMixin := |
