diff options
| author | Cyril Cohen | 2020-10-30 18:50:56 +0100 |
|---|---|---|
| committer | GitHub | 2020-10-30 18:50:56 +0100 |
| commit | 1ec04efdcd1b00a6ae651551699c8b815a2a063f (patch) | |
| tree | 62f0dc367dc9ab3fa4210ee5e003b03a34eda25f /mathcomp/field/closed_field.v | |
| parent | fe8759d1faec24cbe9d838f777682e260680d370 (diff) | |
| parent | bd02346e4038871f4d4021dd84df384fc8cf9aa4 (diff) | |
Merge pull request #607 from pi8027/distr-suffixes
Switch from long suffixes to short suffixes
Diffstat (limited to 'mathcomp/field/closed_field.v')
| -rw-r--r-- | mathcomp/field/closed_field.v | 13 |
1 files changed, 5 insertions, 8 deletions
diff --git a/mathcomp/field/closed_field.v b/mathcomp/field/closed_field.v index a6f7514..266788c 100644 --- a/mathcomp/field/closed_field.v +++ b/mathcomp/field/closed_field.v @@ -200,7 +200,7 @@ Lemma eval_sumpT (p q : polyF) (e : seq F) : Proof. elim: p q => [|a p Hp] q /=; first by rewrite add0r. case: q => [|b q] /=; first by rewrite addr0. -rewrite Hp mulrDl -!addrA; congr (_ + _); rewrite polyC_add addrC -addrA. +rewrite Hp mulrDl -!addrA; congr (_ + _); rewrite polyCD addrC -addrA. by congr (_ + _); rewrite addrC. Qed. @@ -220,15 +220,12 @@ Lemma eval_mulpT (p q : polyF) (e : seq F) : Proof. elim: p q=> [|a p Hp] q /=; first by rewrite mul0r. rewrite eval_sumpT /= Hp addr0 mulrDl addrC mulrAC; congr (_ + _). -elim: q=> [|b q Hq] /=; first by rewrite mulr0. -by rewrite Hq polyC_mul mulrDr mulrA. +by elim: q=> [|b q Hq] /=; rewrite ?mulr0 // Hq polyCM mulrDr mulrA. Qed. Lemma rpoly_map_mul (t : tF) (p : polyF) (rt : rterm t) : rpoly [seq (t * x)%T | x <- p] = rpoly p. -Proof. -by rewrite /rpoly all_map /= (@eq_all _ _ (@rterm _)) // => x; rewrite /= rt. -Qed. +Proof. by rewrite /rpoly all_map; apply/eq_all => x; rewrite /= rt. Qed. Lemma rmulpT (p q : polyF) : rpoly p -> rpoly q -> rpoly (mulpT p q). Proof. @@ -242,7 +239,7 @@ Definition opppT : polyF -> polyF := map (GRing.Mul (- 1%T)%T). Lemma eval_opppT (p : polyF) (e : seq F) : eval_poly e (opppT p) = - eval_poly e p. Proof. -by elim: p; rewrite /= ?oppr0 // => ? ? ->; rewrite !mulNr opprD polyC_opp mul1r. +by elim: p; rewrite /= ?oppr0 // => ? ? ->; rewrite !mulNr opprD polyCN mul1r. Qed. Definition natmulpT n : polyF -> polyF := map (GRing.Mul n%:R%T). @@ -251,7 +248,7 @@ Lemma eval_natmulpT (p : polyF) (n : nat) (e : seq F) : eval_poly e (natmulpT n p) = (eval_poly e p) *+ n. Proof. elim: p; rewrite //= ?mul0rn // => c p ->. -rewrite mulrnDl mulr_natl polyC_muln; congr (_ + _). +rewrite mulrnDl mulr_natl polyCMn; congr (_ + _). by rewrite -mulr_natl mulrAC -mulrA mulr_natl mulrC. Qed. |
