aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/field/algC.v
diff options
context:
space:
mode:
authorGeorges Gonthier2018-12-13 12:55:43 +0100
committerGeorges Gonthier2018-12-13 12:55:43 +0100
commit0b1ea03dafcf36880657ba910eec28ab78ccd018 (patch)
tree60a84ff296299226d530dd0b495be24fd7675748 /mathcomp/field/algC.v
parentfa9b7b19fc0409f3fdfa680e08f40a84594e8307 (diff)
Adjust implicits of cancellation lemmas
Like injectivity lemmas, instances of cancellation lemmas (whose conclusion is `cancel ? ?`, `{in ?, cancel ? ?}`, `pcancel`, or `ocancel`) are passed to generic lemmas such as `canRL` or `canLR_in`. Thus such lemmas should not have trailing on-demand implicits _just before_ the `cancel` conclusion, as these would be inconvenient to insert (requiring essentially an explicit eta-expansion). We therefore use `Arguments` or `Prenex Implicits` directives to make all such arguments maximally inserted implicits. We don’t, however make other arguments implicit, so as not to spoil direct instantiation of the lemmas (in, e.g., `rewrite -[y](invmK injf)`). We have also tried to do this with lemmas whose statement matches a `cancel`, i.e., ending in `forall x, g (E[x]) = x` (where pattern unification will pick up `f = fun x => E[x]`). We also adjusted implicits of a few stray injectivity lemmas, and defined constants. We provide a shorthand for reindexing a bigop with a permutation. Finally we used the new implicit signatures to simplify proofs that use injectivity or cancellation lemmas.
Diffstat (limited to 'mathcomp/field/algC.v')
-rw-r--r--mathcomp/field/algC.v7
1 files changed, 4 insertions, 3 deletions
diff --git a/mathcomp/field/algC.v b/mathcomp/field/algC.v
index fc01763..ae60027 100644
--- a/mathcomp/field/algC.v
+++ b/mathcomp/field/algC.v
@@ -279,7 +279,7 @@ Canonical eqType := EqType type eqMixin.
Definition choiceMixin : Choice.mixin_of type := EquivQuot.choiceMixin _.
Canonical choiceType := ChoiceType type choiceMixin.
-Definition countMixin : Countable.mixin_of type := CanCountMixin (@reprK _ _).
+Definition countMixin : Countable.mixin_of type := CanCountMixin reprK.
Canonical countType := CountType type countMixin.
Definition CtoL (u : type) := rootQtoL (repr u).
@@ -607,7 +607,8 @@ Local Notation intrp := (map_poly intr).
Local Notation pZtoQ := (map_poly ZtoQ).
Local Notation pZtoC := (map_poly ZtoC).
Local Notation pQtoC := (map_poly ratr).
-Local Hint Resolve (@intr_inj _ : injective ZtoC) : core.
+
+Local Hint Resolve (intr_inj : injective ZtoC) : core.
(* Specialization of a few basic ssrnum order lemmas. *)
@@ -882,7 +883,7 @@ Lemma CintE x : (x \in Cint) = (x \in Cnat) || (- x \in Cnat).
Proof.
apply/idP/idP=> [/CintP[[n | n] ->] | ]; first by rewrite Cnat_nat.
by rewrite NegzE opprK Cnat_nat orbT.
-by case/pred2P=> [<- | /(canLR (@opprK _)) <-]; rewrite ?rpredN rpred_nat.
+by case/pred2P=> [<- | /(canLR opprK) <-]; rewrite ?rpredN rpred_nat.
Qed.
Lemma Cnat_norm_Cint x : x \in Cint -> `|x| \in Cnat.