diff options
| author | Georges Gonthier | 2018-12-13 12:55:43 +0100 |
|---|---|---|
| committer | Georges Gonthier | 2018-12-13 12:55:43 +0100 |
| commit | 0b1ea03dafcf36880657ba910eec28ab78ccd018 (patch) | |
| tree | 60a84ff296299226d530dd0b495be24fd7675748 /mathcomp/field/algC.v | |
| parent | fa9b7b19fc0409f3fdfa680e08f40a84594e8307 (diff) | |
Adjust implicits of cancellation lemmas
Like injectivity lemmas, instances of cancellation lemmas (whose
conclusion is `cancel ? ?`, `{in ?, cancel ? ?}`, `pcancel`, or
`ocancel`) are passed to
generic lemmas such as `canRL` or `canLR_in`. Thus such lemmas should
not have trailing on-demand implicits _just before_ the `cancel`
conclusion, as these would be inconvenient to insert (requiring
essentially an explicit eta-expansion).
We therefore use `Arguments` or `Prenex Implicits` directives to make
all such arguments maximally inserted implicits. We don’t, however make
other arguments implicit, so as not to spoil direct instantiation of
the lemmas (in, e.g., `rewrite -[y](invmK injf)`).
We have also tried to do this with lemmas whose statement matches a
`cancel`, i.e., ending in `forall x, g (E[x]) = x` (where pattern
unification will pick up `f = fun x => E[x]`).
We also adjusted implicits of a few stray injectivity
lemmas, and defined constants.
We provide a shorthand for reindexing a bigop with a permutation.
Finally we used the new implicit signatures to simplify proofs that
use injectivity or cancellation lemmas.
Diffstat (limited to 'mathcomp/field/algC.v')
| -rw-r--r-- | mathcomp/field/algC.v | 7 |
1 files changed, 4 insertions, 3 deletions
diff --git a/mathcomp/field/algC.v b/mathcomp/field/algC.v index fc01763..ae60027 100644 --- a/mathcomp/field/algC.v +++ b/mathcomp/field/algC.v @@ -279,7 +279,7 @@ Canonical eqType := EqType type eqMixin. Definition choiceMixin : Choice.mixin_of type := EquivQuot.choiceMixin _. Canonical choiceType := ChoiceType type choiceMixin. -Definition countMixin : Countable.mixin_of type := CanCountMixin (@reprK _ _). +Definition countMixin : Countable.mixin_of type := CanCountMixin reprK. Canonical countType := CountType type countMixin. Definition CtoL (u : type) := rootQtoL (repr u). @@ -607,7 +607,8 @@ Local Notation intrp := (map_poly intr). Local Notation pZtoQ := (map_poly ZtoQ). Local Notation pZtoC := (map_poly ZtoC). Local Notation pQtoC := (map_poly ratr). -Local Hint Resolve (@intr_inj _ : injective ZtoC) : core. + +Local Hint Resolve (intr_inj : injective ZtoC) : core. (* Specialization of a few basic ssrnum order lemmas. *) @@ -882,7 +883,7 @@ Lemma CintE x : (x \in Cint) = (x \in Cnat) || (- x \in Cnat). Proof. apply/idP/idP=> [/CintP[[n | n] ->] | ]; first by rewrite Cnat_nat. by rewrite NegzE opprK Cnat_nat orbT. -by case/pred2P=> [<- | /(canLR (@opprK _)) <-]; rewrite ?rpredN rpred_nat. +by case/pred2P=> [<- | /(canLR opprK) <-]; rewrite ?rpredN rpred_nat. Qed. Lemma Cnat_norm_Cint x : x \in Cint -> `|x| \in Cnat. |
