diff options
| author | affeldt-aist | 2020-04-09 13:43:32 +0200 |
|---|---|---|
| committer | GitHub | 2020-04-09 13:43:32 +0200 |
| commit | ad82c5fb56113bdef57e96f6a79000a29803eb38 (patch) | |
| tree | 07c9348f97482124e7a19725863dd3373ea598e5 /mathcomp/character | |
| parent | 504a34ba48a29a252c40cfc0467f6b192243b6bc (diff) | |
| parent | 31dec18a2539cfdac70fd87401db2b4b14d81d16 (diff) | |
Merge pull request #474 from llelf/doc-typos
Documentation typos
Diffstat (limited to 'mathcomp/character')
| -rw-r--r-- | mathcomp/character/integral_char.v | 2 | ||||
| -rw-r--r-- | mathcomp/character/mxabelem.v | 2 |
2 files changed, 2 insertions, 2 deletions
diff --git a/mathcomp/character/integral_char.v b/mathcomp/character/integral_char.v index 7e470b2..2b886a6 100644 --- a/mathcomp/character/integral_char.v +++ b/mathcomp/character/integral_char.v @@ -83,7 +83,7 @@ Qed. Section GenericClassSums. (* This is Isaacs, Theorem (2.4), generalized to an arbitrary field, and with *) -(* the combinatorial definition of the coeficients exposed. *) +(* the combinatorial definition of the coefficients exposed. *) (* This part could move to mxrepresentation.*) Variable (gT : finGroupType) (G : {group gT}) (F : fieldType). diff --git a/mathcomp/character/mxabelem.v b/mathcomp/character/mxabelem.v index 1c3fe0b..92470d9 100644 --- a/mathcomp/character/mxabelem.v +++ b/mathcomp/character/mxabelem.v @@ -11,7 +11,7 @@ From mathcomp Require Import mxalgebra mxrepresentation. (******************************************************************************) (* This file completes the theory developed in mxrepresentation.v with the *) (* construction and properties of linear representations over finite fields, *) -(* and in particular the correspondance between internal action on a (normal) *) +(* and in particular the correspondence between internal action on a (normal) *) (* elementary abelian p-subgroup and a linear representation on an Fp-module. *) (* We provide the following next constructions for a finite field F: *) (* 'Zm%act == the action of {unit F} on 'M[F]_(m, n). *) |
