aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/character
diff options
context:
space:
mode:
authoraffeldt-aist2020-04-09 13:43:32 +0200
committerGitHub2020-04-09 13:43:32 +0200
commitad82c5fb56113bdef57e96f6a79000a29803eb38 (patch)
tree07c9348f97482124e7a19725863dd3373ea598e5 /mathcomp/character
parent504a34ba48a29a252c40cfc0467f6b192243b6bc (diff)
parent31dec18a2539cfdac70fd87401db2b4b14d81d16 (diff)
Merge pull request #474 from llelf/doc-typos
Documentation typos
Diffstat (limited to 'mathcomp/character')
-rw-r--r--mathcomp/character/integral_char.v2
-rw-r--r--mathcomp/character/mxabelem.v2
2 files changed, 2 insertions, 2 deletions
diff --git a/mathcomp/character/integral_char.v b/mathcomp/character/integral_char.v
index 7e470b2..2b886a6 100644
--- a/mathcomp/character/integral_char.v
+++ b/mathcomp/character/integral_char.v
@@ -83,7 +83,7 @@ Qed.
Section GenericClassSums.
(* This is Isaacs, Theorem (2.4), generalized to an arbitrary field, and with *)
-(* the combinatorial definition of the coeficients exposed. *)
+(* the combinatorial definition of the coefficients exposed. *)
(* This part could move to mxrepresentation.*)
Variable (gT : finGroupType) (G : {group gT}) (F : fieldType).
diff --git a/mathcomp/character/mxabelem.v b/mathcomp/character/mxabelem.v
index 1c3fe0b..92470d9 100644
--- a/mathcomp/character/mxabelem.v
+++ b/mathcomp/character/mxabelem.v
@@ -11,7 +11,7 @@ From mathcomp Require Import mxalgebra mxrepresentation.
(******************************************************************************)
(* This file completes the theory developed in mxrepresentation.v with the *)
(* construction and properties of linear representations over finite fields, *)
-(* and in particular the correspondance between internal action on a (normal) *)
+(* and in particular the correspondence between internal action on a (normal) *)
(* elementary abelian p-subgroup and a linear representation on an Fp-module. *)
(* We provide the following next constructions for a finite field F: *)
(* 'Zm%act == the action of {unit F} on 'M[F]_(m, n). *)