diff options
| author | Jasper Hugunin | 2018-02-22 00:48:18 -0800 |
|---|---|---|
| committer | Jasper Hugunin | 2018-02-22 00:48:18 -0800 |
| commit | 66c7010194f5946cc4f07edc55f92129d0963b99 (patch) | |
| tree | 7d2c058d97de2d988902c6a7424e03e7dc988733 /mathcomp/character | |
| parent | 40d53fc61a7907c7f08bf37b9ab045ef4a5a1fe9 (diff) | |
Change Implicit Arguments to Arguments in character
Diffstat (limited to 'mathcomp/character')
| -rw-r--r-- | mathcomp/character/character.v | 16 | ||||
| -rw-r--r-- | mathcomp/character/classfun.v | 28 | ||||
| -rw-r--r-- | mathcomp/character/inertia.v | 2 | ||||
| -rw-r--r-- | mathcomp/character/mxrepresentation.v | 70 | ||||
| -rw-r--r-- | mathcomp/character/vcharacter.v | 2 |
5 files changed, 59 insertions, 59 deletions
diff --git a/mathcomp/character/character.v b/mathcomp/character/character.v index 6408b0b..ad0fa32 100644 --- a/mathcomp/character/character.v +++ b/mathcomp/character/character.v @@ -390,7 +390,7 @@ Qed. End StandardRepresentation. -Implicit Arguments grepr0 [R gT G]. +Arguments grepr0 [R gT G]. Prenex Implicits grepr0 dadd_grepr. Section Char. @@ -818,7 +818,7 @@ End IrrClass. Arguments Scope cfReg [_ group_scope]. Prenex Implicits cfIirr. -Implicit Arguments irr_inj [[gT] [G] x1 x2]. +Arguments irr_inj {gT G} [x1 x2]. Section IsChar. @@ -924,7 +924,7 @@ Canonical char_semiringPred := SemiringPred mul_char. End IsChar. Prenex Implicits character. -Implicit Arguments char_reprP [gT G phi]. +Arguments char_reprP [gT G phi]. Section AutChar. @@ -1870,7 +1870,7 @@ Proof. by apply/eqP; rewrite isom_Iirr_eq0. Qed. End Isom. -Implicit Arguments isom_Iirr_inj [aT rT G f R x1 x2]. +Arguments isom_Iirr_inj [aT rT G f R] isoGR [x1 x2]. Section IsomInv. @@ -1938,7 +1938,7 @@ Qed. End Sdprod. -Implicit Arguments sdprod_Iirr_inj [gT K H G x1 x2]. +Arguments sdprod_Iirr_inj [gT K H G] defG [x1 x2]. Section DProd. @@ -2089,7 +2089,7 @@ Proof. by apply/(canLR dprod_IirrK); rewrite dprod_Iirr0. Qed. End DProd. -Implicit Arguments dprod_Iirr_inj [gT G K H x1 x2]. +Arguments dprod_Iirr_inj [gT G K H] KxH [x1 x2]. Lemma dprod_IirrC (gT : finGroupType) (G K H : {group gT}) (KxH : K \x H = G) (HxK : H \x K = G) i j : @@ -2257,7 +2257,7 @@ Qed. End Aut. -Implicit Arguments aut_Iirr_inj [gT G x1 x2]. +Arguments aut_Iirr_inj [gT G] u [x1 x2]. Section Coset. @@ -2554,7 +2554,7 @@ Qed. End DerivedGroup. -Implicit Arguments irr_prime_injP [gT G i]. +Arguments irr_prime_injP [gT G i]. (* Determinant characters and determinential order. *) Section DetOrder. diff --git a/mathcomp/character/classfun.v b/mathcomp/character/classfun.v index 81c26ab..3afaa82 100644 --- a/mathcomp/character/classfun.v +++ b/mathcomp/character/classfun.v @@ -557,7 +557,7 @@ rewrite big1 ?addr0 // => _ /andP[/imsetP[y Gy ->]]; apply: contraNeq. rewrite cfunE cfun_repr cfun_classE Gy mulf_eq0 => /norP[_]. by rewrite pnatr_eq0 -lt0n lt0b => /class_eqP->. Qed. -Implicit Arguments cfun_onP [A phi]. +Arguments cfun_onP [A phi]. Lemma cfun_on0 A phi x : phi \in 'CF(G, A) -> x \notin A -> phi x = 0. Proof. by move/cfun_onP; apply. Qed. @@ -759,7 +759,7 @@ End ClassFun. Arguments Scope classfun_on [_ group_scope group_scope]. Notation "''CF' ( G , A )" := (classfun_on G A) : ring_scope. -Implicit Arguments cfun_onP [gT G A phi]. +Arguments cfun_onP [gT G A phi]. Hint Resolve cfun_onT. Section DotProduct. @@ -1009,7 +1009,7 @@ Lemma orthoPl phi S : Proof. by rewrite [orthogonal _ S]andbT /=; apply: (iffP allP) => ophiS ? /ophiS/eqP. Qed. -Implicit Arguments orthoPl [phi S]. +Arguments orthoPl [phi S]. Lemma orthogonal_sym : symmetric (@orthogonal _ G). Proof. @@ -1242,12 +1242,12 @@ Qed. End DotProduct. -Implicit Arguments orthoP [gT G phi psi]. -Implicit Arguments orthoPl [gT G phi S]. -Implicit Arguments orthoPr [gT G S psi]. -Implicit Arguments orthogonalP [gT G R S]. -Implicit Arguments pairwise_orthogonalP [gT G S]. -Implicit Arguments orthonormalP [gT G S]. +Arguments orthoP [gT G phi psi]. +Arguments orthoPl [gT G phi S]. +Arguments orthoPr [gT G S psi]. +Arguments orthogonalP [gT G S R]. +Arguments pairwise_orthogonalP [gT G S]. +Arguments orthonormalP [gT G S]. Section CfunOrder. @@ -1273,7 +1273,7 @@ Proof. by apply/eqP; rewrite -dvdn_cforder. Qed. End CfunOrder. -Implicit Arguments dvdn_cforderP [gT G phi n]. +Arguments dvdn_cforderP [gT G phi n]. Section MorphOrder. @@ -1621,7 +1621,7 @@ Proof. exact: cforder_inj_rmorph cfIsom_inj. Qed. End InvMorphism. -Implicit Arguments cfIsom_inj [aT rT G R f x1 x2]. +Arguments cfIsom_inj [aT rT G f R] isoGR [x1 x2]. Section Coset. @@ -2487,9 +2487,9 @@ Proof. by rewrite rmorphM /= cfAutDprodl cfAutDprodr. Qed. End FieldAutomorphism. -Implicit Arguments cfAutK [[gT] [G]]. -Implicit Arguments cfAutVK [[gT] [G]]. -Implicit Arguments cfAut_inj [gT G x1 x2]. +Arguments cfAutK u {gT G}. +Arguments cfAutVK u {gT G}. +Arguments cfAut_inj u [gT G x1 x2]. Definition conj_cfRes := cfAutRes conjC. Definition cfker_conjC := cfker_aut conjC. diff --git a/mathcomp/character/inertia.v b/mathcomp/character/inertia.v index 9ae289d..7d4a84c 100644 --- a/mathcomp/character/inertia.v +++ b/mathcomp/character/inertia.v @@ -569,7 +569,7 @@ End Inertia. Arguments Scope inertia [_ group_scope cfun_scope]. Arguments Scope cfclass [_ group_scope cfun_scope group_scope]. -Implicit Arguments conjg_Iirr_inj [gT H x1 x2]. +Arguments conjg_Iirr_inj [gT H] y [x1 x2]. Notation "''I[' phi ] " := (inertia phi) : group_scope. Notation "''I[' phi ] " := (inertia_group phi) : Group_scope. diff --git a/mathcomp/character/mxrepresentation.v b/mathcomp/character/mxrepresentation.v index 0c1d4c1..fbd4bc3 100644 --- a/mathcomp/character/mxrepresentation.v +++ b/mathcomp/character/mxrepresentation.v @@ -427,7 +427,7 @@ Qed. End OneRepresentation. -Implicit Arguments rkerP [gT G n rG x]. +Arguments rkerP [gT G n rG x]. Section Proper. @@ -819,8 +819,8 @@ Arguments Scope mx_repr [_ _ group_scope nat_scope _]. Arguments Scope group_ring [_ _ group_scope]. Arguments Scope regular_repr [_ _ group_scope]. -Implicit Arguments centgmxP [R gT G n rG f]. -Implicit Arguments rkerP [R gT G n rG x]. +Arguments centgmxP [R gT G n rG f]. +Arguments rkerP [R gT G n rG x]. Prenex Implicits gring_mxK. Section ChangeOfRing. @@ -933,7 +933,7 @@ by apply: (iffP subsetP) => modU x Gx; have:= modU x Gx; rewrite !inE ?Gx. Qed. End Stabilisers. -Implicit Arguments mxmoduleP [m U]. +Arguments mxmoduleP [m U]. Lemma rstabS m1 m2 (U : 'M_(m1, n)) (V : 'M_(m2, n)) : (U <= V)%MS -> rstab rG V \subset rstab rG U. @@ -1288,7 +1288,7 @@ apply/sub_kermxP; rewrite mul_rV_lin1 /=; apply: (canLR vec_mxK). apply/row_matrixP=> j; rewrite !row_mul rowK mul_vec_lin /= mul_vec_lin_row. by rewrite -!row_mul mulmxBr !mulmxA cGf ?enum_valP // subrr !linear0. Qed. -Implicit Arguments hom_mxP [m f W]. +Arguments hom_mxP [m f W]. Lemma hom_envelop_mxC m f (W : 'M_(m, n)) A : (W <= dom_hom_mx f -> A \in E_G -> W *m A *m f = W *m f *m A)%MS. @@ -1366,7 +1366,7 @@ apply/sub_kermxP; rewrite mul_rV_lin1 /=; apply: (canLR vec_mxK). apply/row_matrixP=> i; rewrite row_mul rowK mul_vec_lin_row -row_mul. by rewrite mulmxBr mulmx1 cHW ?enum_valP // subrr !linear0. Qed. -Implicit Arguments rfix_mxP [m W]. +Arguments rfix_mxP [m W]. Lemma rfix_mx_id (H : {set gT}) x : x \in H -> rfix_mx H *m rG x = rfix_mx H. Proof. exact/rfix_mxP. Qed. @@ -1428,7 +1428,7 @@ rewrite genmxE; apply: (iffP submxP) => [[a] | [A /submxP[a defA]]] -> {v}. by rewrite vec_mxK submxMl. by exists a; rewrite mulmxA mul_rV_lin1 /= -defA mxvecK. Qed. -Implicit Arguments cyclic_mxP [u v]. +Arguments cyclic_mxP [u v]. Lemma cyclic_mx_id u : (u <= cyclic_mx u)%MS. Proof. by apply/cyclic_mxP; exists 1%:M; rewrite ?mulmx1 ?envelop_mx1. Qed. @@ -2366,19 +2366,19 @@ Qed. End OneRepresentation. -Implicit Arguments mxmoduleP [gT G n rG m U]. -Implicit Arguments envelop_mxP [gT G n rG A]. -Implicit Arguments hom_mxP [gT G n rG m f W]. -Implicit Arguments rfix_mxP [gT G n rG m W]. -Implicit Arguments cyclic_mxP [gT G n rG u v]. -Implicit Arguments annihilator_mxP [gT G n rG u A]. -Implicit Arguments row_hom_mxP [gT G n rG u v]. -Implicit Arguments mxsimple_isoP [gT G n rG U V]. -Implicit Arguments socleP [gT G n rG sG0 W W']. -Implicit Arguments mx_abs_irrP [gT G n rG]. +Arguments mxmoduleP [gT G n rG m U]. +Arguments envelop_mxP [gT G n rG A]. +Arguments hom_mxP [gT G n rG m f W]. +Arguments rfix_mxP [gT G n rG m W]. +Arguments cyclic_mxP [gT G n rG u v]. +Arguments annihilator_mxP [gT G n rG u A]. +Arguments row_hom_mxP [gT G n rG u v]. +Arguments mxsimple_isoP [gT G n rG U V]. +Arguments socleP [gT G n rG sG0 W W']. +Arguments mx_abs_irrP [gT G n rG]. -Implicit Arguments val_submod_inj [n U m]. -Implicit Arguments val_factmod_inj [n U m]. +Arguments val_submod_inj [n U m]. +Arguments val_factmod_inj [n U m]. Prenex Implicits val_submod_inj val_factmod_inj. @@ -4659,22 +4659,22 @@ Arguments Scope gset_mx [_ _ group_scope group_scope]. Arguments Scope classg_base [_ _ group_scope group_scope]. Arguments Scope irrType [_ _ group_scope group_scope]. -Implicit Arguments mxmoduleP [F gT G n rG m U]. -Implicit Arguments envelop_mxP [F gT G n rG A]. -Implicit Arguments hom_mxP [F gT G n rG m f W]. -Implicit Arguments mx_Maschke [F gT G n U]. -Implicit Arguments rfix_mxP [F gT G n rG m W]. -Implicit Arguments cyclic_mxP [F gT G n rG u v]. -Implicit Arguments annihilator_mxP [F gT G n rG u A]. -Implicit Arguments row_hom_mxP [F gT G n rG u v]. -Implicit Arguments mxsimple_isoP [F gT G n rG U V]. -Implicit Arguments socle_exists [F gT G n]. -Implicit Arguments socleP [F gT G n rG sG0 W W']. -Implicit Arguments mx_abs_irrP [F gT G n rG]. -Implicit Arguments socle_rsimP [F gT G n rG sG W1 W2]. - -Implicit Arguments val_submod_inj [F n U m]. -Implicit Arguments val_factmod_inj [F n U m]. +Arguments mxmoduleP [F gT G n rG m U]. +Arguments envelop_mxP [F gT G n rG A]. +Arguments hom_mxP [F gT G n rG m f W]. +Arguments mx_Maschke [F gT G n] rG _ [U]. +Arguments rfix_mxP [F gT G n rG m W]. +Arguments cyclic_mxP [F gT G n rG u v]. +Arguments annihilator_mxP [F gT G n rG u A]. +Arguments row_hom_mxP [F gT G n rG u v]. +Arguments mxsimple_isoP [F gT G n rG U V]. +Arguments socle_exists [F gT G n]. +Arguments socleP [F gT G n rG sG0 W W']. +Arguments mx_abs_irrP [F gT G n rG]. +Arguments socle_rsimP [F gT G n rG sG W1 W2]. + +Arguments val_submod_inj [F n U m]. +Arguments val_factmod_inj [F n U m]. Prenex Implicits val_submod_inj val_factmod_inj. Notation "'Cl" := (Clifford_action _) : action_scope. diff --git a/mathcomp/character/vcharacter.v b/mathcomp/character/vcharacter.v index 97ad828..5c9ca9b 100644 --- a/mathcomp/character/vcharacter.v +++ b/mathcomp/character/vcharacter.v @@ -709,7 +709,7 @@ End MoreVchar. Definition dirr (gT : finGroupType) (B : {set gT}) : pred_class := [pred f : 'CF(B) | (f \in irr B) || (- f \in irr B)]. -Implicit Arguments dirr [[gT]]. +Arguments dirr {gT}. Section Norm1vchar. |
