aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/character/vcharacter.v
diff options
context:
space:
mode:
authorGeorges Gonthier2019-11-26 17:28:36 +0100
committerGeorges Gonthier2019-11-27 17:13:20 +0100
commit4bd5ba38e4f6c6456a8fcc39364a67b51fde92f2 (patch)
tree3829794151b4611775d602cb721e5507393671cc /mathcomp/character/vcharacter.v
parentf43a928dc62abd870c3b15b4147b2ad76029b701 (diff)
Explicit `bigop` enumeration handling
Added lemmas `big_enum_cond`, `big_enum` and `big_enumP` to handle more explicitly big ops iterating over explicit enumerations in a `finType`. The previous practice was to rely on the convertibility between `enum A` and `filter A (index_enum T)`, sometimes explicitly via the `filter_index_enum` equality, more often than not implicitly. Both are likely to fail after the integration of `finmap`, as the `choiceType` theory can’t guarantee that the order in selected enumerations is consistent. For this reason `big_enum` and the related (but currently unused) `big_image` lemmas are restricted to the abelian case. The `big_enumP` lemma can be used to handle enumerations in the non-abelian case, as explained in the `bigop.v` internal documentation. The Changelog entry enjoins clients to stop relying on either `filter_index_enum` and convertibility (though this PR still provides both), and warns about the restriction of the `big_image` lemma set to the abelian case, as it it a possible source of incompatibility.
Diffstat (limited to 'mathcomp/character/vcharacter.v')
-rw-r--r--mathcomp/character/vcharacter.v2
1 files changed, 1 insertions, 1 deletions
diff --git a/mathcomp/character/vcharacter.v b/mathcomp/character/vcharacter.v
index 4a113b6..72bacc3 100644
--- a/mathcomp/character/vcharacter.v
+++ b/mathcomp/character/vcharacter.v
@@ -464,7 +464,7 @@ Proof.
move=> Zphi def_n lt_n_4.
pose S := [seq '[phi, 'chi_i] *: 'chi_i | i in irr_constt phi].
have def_phi: phi = \sum_(xi <- S) xi.
- rewrite big_map /= big_filter big_mkcond {1}[phi]cfun_sum_cfdot.
+ rewrite big_image big_mkcond {1}[phi]cfun_sum_cfdot.
by apply: eq_bigr => i _; rewrite if_neg; case: eqP => // ->; rewrite scale0r.
have orthS: orthonormal S.
apply/orthonormalP; split=> [|_ _ /mapP[i phi_i ->] /mapP[j _ ->]].