diff options
| author | Cyril Cohen | 2017-11-23 16:33:36 +0100 |
|---|---|---|
| committer | Cyril Cohen | 2018-02-06 13:54:37 +0100 |
| commit | fafd4dac5315e1d4e071b0044a50a16360b31964 (patch) | |
| tree | 5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/character/mxrepresentation.v | |
| parent | 835467324db450c8fb8971e477cc4d82fa3e861b (diff) | |
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/character/mxrepresentation.v')
| -rw-r--r-- | mathcomp/character/mxrepresentation.v | 30 |
1 files changed, 15 insertions, 15 deletions
diff --git a/mathcomp/character/mxrepresentation.v b/mathcomp/character/mxrepresentation.v index 6dd4eec..0c1d4c1 100644 --- a/mathcomp/character/mxrepresentation.v +++ b/mathcomp/character/mxrepresentation.v @@ -712,7 +712,7 @@ Definition regular_mx x : 'M[R]_nG := Lemma regular_mx_repr : mx_repr G regular_mx. Proof. split=> [|x y Gx Gy]; apply/row_matrixP=> i; rewrite !rowK. - by rewrite mulg1 row1 gring_valK. + by rewrite mulg1 row1 gring_valK. by rewrite row_mul rowK -rowE rowK mulgA gring_indexK // groupM ?enum_valP. Qed. Canonical regular_repr := MxRepresentation regular_mx_repr. @@ -1453,7 +1453,7 @@ Lemma cyclic_mx_sub m u (W : 'M_(m, n)) : Proof. move=> modU Wu; rewrite genmxE; apply/row_subP=> i. by rewrite row_mul mul_rV_lin1 /= mxmodule_envelop // vec_mxK row_sub. -Qed. +Qed. Lemma hom_cyclic_mx u f : (u <= dom_hom_mx f)%MS -> (cyclic_mx u *m f :=: cyclic_mx (u *m f))%MS. @@ -1585,7 +1585,7 @@ Proof. move=> isoUV [modU nzU simU]; have [f injf homUf defV] := isoUV. split=> [||W modW sWV nzW]; first by rewrite (mx_iso_module isoUV). by rewrite -(eqmx_eq0 defV) -(mul0mx n f) (can_eq (mulmxK injf)). -rewrite -defV -[W](mulmxKV injf) submxMr //; set W' := W *m _. +rewrite -defV -[W](mulmxKV injf) submxMr //; set W' := W *m _. have sW'U: (W' <= U)%MS by rewrite -[U](mulmxK injf) submxMr ?defV. rewrite (simU W') //; last by rewrite -(can_eq (mulmxK injf)) mul0mx mulmxKV. rewrite hom_mxmodule ?dom_hom_invmx // -[W](mulmxKV injf) submxMr //. @@ -1640,7 +1640,7 @@ Proof. move=> simU simV homUf sUfV nzUf; have [modU _ _] := simU. have [g invg homUg defUg] := mx_Schur_inj_iso simU homUf nzUf. exists g => //; apply: mx_Schur_onto; rewrite ?defUg //. -by rewrite -!submx0 defUg in nzUf *. +by rewrite -!submx0 defUg in nzUf *. Qed. (* A boolean test for module isomorphism that is only valid for simple *) @@ -1998,7 +1998,7 @@ Proof. have [I [W isoUW ->]] := component_mx_def => simV homWf sVWf. have [i _ _|i _ ] := hom_mxsemisimple_iso simV _ homWf sVWf. exact: mx_iso_simple (simU). -exact: mx_iso_trans. +exact: mx_iso_trans. Qed. Lemma component_mx_iso V : mxsimple V -> (V <= compU)%MS -> mx_iso U V. @@ -2189,7 +2189,7 @@ have modMS: mxmodule (M :&: S)%MS by rewrite capmx_module ?subSocle_module. have [J /= U simU defMS _] := mxsemisimpleS modMS (capmxSr M S) ssimS. rewrite -defMS; apply/sumsmx_subP=> j _. have [sUjV sUjS]: (U j <= M /\ U j <= S)%MS. - by apply/andP; rewrite -sub_capmx -defMS (sumsmx_sup j). + by apply/andP; rewrite -sub_capmx -defMS (sumsmx_sup j). have [W P_W isoWU] := subSocle_iso (simU j) sUjS. rewrite (sumsmx_sup W) // sub_capmx sUjV mx_iso_component //. exact: socle_simple. @@ -2360,7 +2360,7 @@ suffices defM: (M == 1%:M)%MS by rewrite (eqmxP defM) mxrank1 in rM. case: (mx_abs_irrW absG) => _ _ ->; rewrite ?submx1 -?mxrank_eq0 ?rM //. apply/mxmoduleP=> x Gx; suffices: is_scalar_mx (rG x). by case/is_scalar_mxP=> a ->; rewrite mul_mx_scalar scalemx_sub. -apply: (mx_abs_irr_cent_scalar absG). +apply: (mx_abs_irr_cent_scalar absG). by apply/centgmxP=> y Gy; rewrite -!repr_mxM // (centsP cGG). Qed. @@ -3442,7 +3442,7 @@ rewrite inE -val_eqE /= PackSocleK eq_sym. by apply/component_mx_isoP; rewrite ?subgK //; apply: Clifford_iso. Qed. -Lemma Clifford_astab1 (W : sH) : 'C[W | 'Cl] = rstabs rG W. +Lemma Clifford_astab1 (W : sH) : 'C[W | 'Cl] = rstabs rG W. Proof. apply/setP=> x; rewrite !inE; apply: andb_id2l => Gx. rewrite sub1set inE (sameP eqP socleP) !val_Clifford_act //. @@ -3638,7 +3638,7 @@ have UvalI: (valI <= U)%MS. exists (valI *m in_factmod _ 1%:M *m in_submod _ 1%:M) => [||x Gx]. - apply: (@addIn (\rank (U :&: V) + \rank V)%N); rewrite genmxE addnA addnCA. rewrite /nI genmxE !{1}mxrank_in_factmod 2?(addsmx_idPr _) //. - by rewrite -mxrank_sum_cap addnC. + by rewrite -mxrank_sum_cap addnC. - rewrite -kermx_eq0; apply/rowV0P=> u; rewrite (sameP sub_kermxP eqP). rewrite mulmxA -in_submodE mulmxA -in_factmodE -(inj_eq val_submod_inj). rewrite linear0 in_submodK ?in_factmod_eq0 => [Vvu|]; last first. @@ -4329,7 +4329,7 @@ rewrite -ker_irr_comp_op sub_capmx (sameP sub_kermxP eqP) mul_vec_lin. by rewrite 2!linearB /= eqAB subrr linear0 addmx_sub ?eqmx_opp /=. Qed. -Lemma rank_irr_comp : \rank 'R_iG = \rank E_G. +Lemma rank_irr_comp : \rank 'R_iG = \rank E_G. Proof. symmetry; rewrite -{1}irr_comp_envelop; apply/mxrank_injP. by rewrite ker_irr_comp_op. @@ -4544,7 +4544,7 @@ have [_ nG'G] := andP (der_normal 1 G); apply/eqP; rewrite -card_quotient //. have cGqGq: abelian (G / G^`(1))%g by apply: sub_der1_abelian. have F'Gq: [char F]^'.-group (G / G^`(1))%g by apply: morphim_pgroup. have splitGq: group_splitting_field (G / G^`(1))%G. - exact: quotient_splitting_field. + exact: quotient_splitting_field. rewrite -(sum_irr_degree sGq) // -sum1_card. pose rG (j : sGq) := morphim_repr (socle_repr j) nG'G. have irrG j: mx_irreducible (rG j) by apply/morphim_mx_irr; apply: socle_irr. @@ -4785,7 +4785,7 @@ suffices defU: (\sum_i oapp W_ V i :=: U)%MS. apply: eqmx_trans defVW; rewrite (bigD1 None) //=; apply/eqmxP. have [i0 _ | I0] := pickP I. by rewrite (reindex some) ?addsmxS ?defW //; exists (odflt i0) => //; case. -rewrite big_pred0 //; last by case => // /I0. +rewrite big_pred0 //; last by case=> // /I0. by rewrite !addsmxS ?sub0mx // -defW big_pred0. Qed. @@ -4841,7 +4841,7 @@ have sVS: (V <= \sum_(W : sG | has (fun Mi => Mi <= W) Ms) W)%MS. rewrite [V](big_nth 0) big_mkord; apply/sumsmx_subP=> i _. set Mi := Ms`_i; have MsMi: Mi \in Ms by apply: mem_nth. have simMi := simMs _ MsMi; have S_Mi := component_socle sG simMi. - rewrite (sumsmx_sup (PackSocle S_Mi)) ?PackSocleK //. + rewrite (sumsmx_sup (PackSocle S_Mi)) ?PackSocleK //. by apply/hasP; exists Mi; rewrite ?component_mx_id. have [W MsW isoWM] := subSocle_iso simM (submx_trans sMV sVS). have [Mi MsMi sMiW] := hasP MsW; apply/hasP; exists Mi => //. @@ -4908,7 +4908,7 @@ Lemma map_mx_faithful : mx_faithful rGf = mx_faithful rG. Proof. by rewrite /mx_faithful rker_map. Qed. Lemma map_mx_abs_irr : - mx_absolutely_irreducible rGf = mx_absolutely_irreducible rG. + mx_absolutely_irreducible rGf = mx_absolutely_irreducible rG. Proof. by rewrite /mx_absolutely_irreducible -map_enveloping_algebra_mx row_full_map. Qed. @@ -5284,7 +5284,7 @@ rewrite {1}mulSn -Bfree -{1}rBj {rBj} -mxrank_disjoint_sum. rewrite mxrankS // addsmx_sub -[m.+1]/(1 + m)%N; apply/andP; split. apply/row_subP=> k; rewrite row_mul mul_rV_lin1 /=. apply: eq_row_sub (mxvec_index (lshift _ 0) k) _. - by rewrite !rowK mxvecK mxvecE mxE row_mxEl mxE -row_mul mul1mx. + by rewrite !rowK mxvecK mxvecE mxE row_mxEl mxE -row_mul mul1mx. apply/row_subP; case/mxvec_indexP=> i k. apply: eq_row_sub (mxvec_index (rshift 1 i) k) _. by rewrite !rowK !mxvecE 2!mxE row_mxEr. |
