aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/character/mxrepresentation.v
diff options
context:
space:
mode:
authorGeorges Gonthier2018-12-13 12:55:43 +0100
committerGeorges Gonthier2018-12-13 12:55:43 +0100
commit0b1ea03dafcf36880657ba910eec28ab78ccd018 (patch)
tree60a84ff296299226d530dd0b495be24fd7675748 /mathcomp/character/mxrepresentation.v
parentfa9b7b19fc0409f3fdfa680e08f40a84594e8307 (diff)
Adjust implicits of cancellation lemmas
Like injectivity lemmas, instances of cancellation lemmas (whose conclusion is `cancel ? ?`, `{in ?, cancel ? ?}`, `pcancel`, or `ocancel`) are passed to generic lemmas such as `canRL` or `canLR_in`. Thus such lemmas should not have trailing on-demand implicits _just before_ the `cancel` conclusion, as these would be inconvenient to insert (requiring essentially an explicit eta-expansion). We therefore use `Arguments` or `Prenex Implicits` directives to make all such arguments maximally inserted implicits. We don’t, however make other arguments implicit, so as not to spoil direct instantiation of the lemmas (in, e.g., `rewrite -[y](invmK injf)`). We have also tried to do this with lemmas whose statement matches a `cancel`, i.e., ending in `forall x, g (E[x]) = x` (where pattern unification will pick up `f = fun x => E[x]`). We also adjusted implicits of a few stray injectivity lemmas, and defined constants. We provide a shorthand for reindexing a bigop with a permutation. Finally we used the new implicit signatures to simplify proofs that use injectivity or cancellation lemmas.
Diffstat (limited to 'mathcomp/character/mxrepresentation.v')
-rw-r--r--mathcomp/character/mxrepresentation.v48
1 files changed, 39 insertions, 9 deletions
diff --git a/mathcomp/character/mxrepresentation.v b/mathcomp/character/mxrepresentation.v
index 560b61d..0968347 100644
--- a/mathcomp/character/mxrepresentation.v
+++ b/mathcomp/character/mxrepresentation.v
@@ -300,13 +300,13 @@ Lemma repr_mxM : {in G &, {morph rG : x y / (x * y)%g >-> x *m y}}.
Proof. by case: rG => r []. Qed.
Lemma repr_mxK m x :
- x \in G -> cancel ((@mulmx _ m n n)^~ (rG x)) (mulmx^~ (rG x^-1)).
+ x \in G -> cancel ((@mulmx R m n n)^~ (rG x)) (mulmx^~ (rG x^-1)).
Proof.
by move=> Gx U; rewrite -mulmxA -repr_mxM ?groupV // mulgV repr_mx1 mulmx1.
Qed.
Lemma repr_mxKV m x :
- x \in G -> cancel ((@mulmx _ m n n)^~ (rG x^-1)) (mulmx^~ (rG x)).
+ x \in G -> cancel ((@mulmx R m n n)^~ (rG x^-1)) (mulmx^~ (rG x)).
Proof. by rewrite -groupV -{3}[x]invgK; apply: repr_mxK. Qed.
Lemma repr_mx_unit x : x \in G -> rG x \in unitmx.
@@ -821,7 +821,11 @@ Arguments regular_repr R {gT} G%g.
Arguments centgmxP {R gT G n rG f}.
Arguments rkerP {R gT G n rG x}.
-Prenex Implicits gring_mxK.
+Arguments repr_mxK {R gT G%G n%N} rG {m%N} [x%g] Gx.
+Arguments repr_mxKV {R gT G%G n%N} rG {m%N} [x%g] Gx.
+Arguments gring_valK {gT G%G} i%R : rename.
+Arguments gring_indexK {gT G%G} x%g.
+Arguments gring_mxK {R gT G%G} v%R : rename.
Section ChangeOfRing.
@@ -2377,7 +2381,16 @@ Arguments mxsimple_isoP {gT G n rG U V}.
Arguments socleP {gT G n rG sG0 W W'}.
Arguments mx_abs_irrP {gT G n rG}.
+Arguments val_submod {n U m} W.
+Arguments in_submod {n} U {m} W.
+Arguments val_submodK {n U m} W : rename.
+Arguments in_submodK {n U m} [W] sWU.
Arguments val_submod_inj {n U m} [W1 W2] : rename.
+
+Arguments val_factmod {n U m} W.
+Arguments in_factmod {n} U {m} W.
+Arguments val_factmodK {n U m} W : rename.
+Arguments in_factmodK {n} U {m} [W] sWU.
Arguments val_factmod_inj {n U m} [W1 W2] : rename.
Section Proper.
@@ -3797,7 +3810,7 @@ rewrite !permM; case: (unliftP i_m i) => [j {simWUm}|] ->{i}; last first.
apply: rsimT (rsimC _) {pUW}(rsimT (pUW j) _).
by rewrite lift_max; apply: rsim_rcons.
rewrite lift_perm_lift; case: (unliftP j_m (pU j)) => [k|] ->{j pU}.
- rewrite tpermD ?(inj_eq (@lift_inj _ _)) ?neq_lift //.
+ rewrite tpermD ?(inj_eq lift_inj) ?neq_lift //.
rewrite lift_perm_lift !lift_max; set j := lift j_m k.
have ltjW: j < size W by have:= ltn_ord k; rewrite -(lift_max k) /= {1 3}szW.
apply: rsimT (rsimT (pWV j) _); last by apply: rsim_rcons; rewrite -szV.
@@ -4671,16 +4684,28 @@ Arguments socleP {F gT G n rG sG0 W W'}.
Arguments mx_abs_irrP {F gT G n rG}.
Arguments socle_rsimP {F gT G n rG sG W1 W2}.
+Arguments val_submod {F n U m} W.
+Arguments in_submod {F n} U {m} W.
+Arguments val_submodK {F n U m} W : rename.
+Arguments in_submodK {F n U m} [W] sWU.
Arguments val_submod_inj {F n U m} [W1 W2] : rename.
+
+Arguments val_factmod {F n U m} W.
+Arguments in_factmod {F n} U {m} W.
+Arguments val_factmodK {F n U m} W : rename.
+Arguments in_factmodK {F n} U {m} [W] sWU.
Arguments val_factmod_inj {F n U m} [W1 W2] : rename.
Notation "'Cl" := (Clifford_action _) : action_scope.
+Arguments gring_row {R gT G} A.
+Arguments gring_rowK {F gT G} [A] RG_A.
+
Bind Scope irrType_scope with socle_sort.
Notation "[ 1 sG ]" := (principal_comp sG) : irrType_scope.
Arguments irr_degree {F gT G%G sG} i%irr.
-Arguments irr_repr [F gT G%G sG] i%irr _%g : extra scopes.
-Arguments irr_mode [F gT G%G sG] i%irr z%g : rename.
+Arguments irr_repr {F gT G%G sG} i%irr _%g : extra scopes.
+Arguments irr_mode {F gT G%G sG} i%irr z%g : rename.
Notation "''n_' i" := (irr_degree i) : group_ring_scope.
Notation "''R_' i" := (Wedderburn_subring i) : group_ring_scope.
Notation "''e_' i" := (Wedderburn_id i) : group_ring_scope.
@@ -4973,7 +4998,7 @@ Proof.
move=> splitG n rG irrG.
have modU0: all ((mxmodule (regular_repr aF G)) #|G|) [::] by [].
apply: (mx_Schreier modU0 _) => // [[U [compU lastU _]]]; have [modU _]:= compU.
-pose Uf := map ((map_mx f) _ _) U.
+pose Uf := map (map_mx f) U.
have{lastU} lastUf: (last 0 Uf :=: 1%:M)%MS.
by rewrite -(map_mx0 f) -(map_mx1 f) last_map; apply/map_eqmx.
have modUf: mx_subseries (regular_repr rF G) Uf.
@@ -5062,7 +5087,7 @@ by rewrite /mxval [pval _]poly_rV_K ?horner_mx_C // size_polyC; case: (x != 0).
Qed.
Lemma mxval_inj : injective mxval.
-Proof. exact: inj_comp (@horner_rVpoly_inj _ _ A) val_inj. Qed.
+Proof. exact: inj_comp horner_rVpoly_inj val_inj. Qed.
Lemma mxval0 : mxval 0 = 0.
Proof. by rewrite /mxval [pval _]raddf0 rmorph0. Qed.
@@ -5557,6 +5582,11 @@ Proof. by rewrite /mx_faithful rker_gen. Qed.
End GenField.
+Arguments in_gen {F gT G n' rG A} irrG cGA {m1} W.
+Arguments val_gen {F gT G n' rG A} irrG cGA {m1} W.
+Arguments in_genK {F gT G n' rG A} irrG cGA {m1} W : rename.
+Arguments val_genK {F gT G n' rG A} irrG cGA {m1} W : rename.
+
Section DecideGenField.
Import MatrixFormula.
@@ -5596,7 +5626,7 @@ Lemma eval_mulT e u v :
eval_mx e (mulT u v) = val (inFA (eval_mx e u) * inFA (eval_mx e v)).
Proof.
rewrite !(eval_mulmx, eval_mxvec) !eval_mxT eval_mx_term.
-by apply: (can_inj (@rVpolyK _ _)); rewrite -mxvalM [rVpoly _]horner_rVpolyK.
+by apply: (can_inj rVpolyK); rewrite -mxvalM [rVpoly _]horner_rVpolyK.
Qed.
Fixpoint gen_term t := match t with