diff options
| author | Cyril Cohen | 2017-11-23 16:33:36 +0100 |
|---|---|---|
| committer | Cyril Cohen | 2018-02-06 13:54:37 +0100 |
| commit | fafd4dac5315e1d4e071b0044a50a16360b31964 (patch) | |
| tree | 5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/character/classfun.v | |
| parent | 835467324db450c8fb8971e477cc4d82fa3e861b (diff) | |
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/character/classfun.v')
| -rw-r--r-- | mathcomp/character/classfun.v | 20 |
1 files changed, 10 insertions, 10 deletions
diff --git a/mathcomp/character/classfun.v b/mathcomp/character/classfun.v index 54cbc41..81c26ab 100644 --- a/mathcomp/character/classfun.v +++ b/mathcomp/character/classfun.v @@ -464,7 +464,7 @@ Notation "{ 'in' CFD , 'isometry' tau , 'to' CFR }" := (at level 0, format "{ 'in' CFD , 'isometry' tau , 'to' CFR }") : type_scope. -Section ClassFun. +Section ClassFun. Variables (gT : finGroupType) (G : {group gT}). Implicit Types (A B : {set gT}) (H K : {group gT}) (phi psi xi : 'CF(G)). @@ -1123,7 +1123,7 @@ Qed. Lemma eq_pairwise_orthogonal R S : perm_eq R S -> pairwise_orthogonal R = pairwise_orthogonal S. Proof. -apply: catCA_perm_subst R S => R S S'. +apply: catCA_perm_subst R S => R S S'. rewrite !pairwise_orthogonal_cat !orthogonal_catr (orthogonal_sym R S) -!andbA. by do !bool_congr. Qed. @@ -1201,7 +1201,7 @@ Qed. Lemma sub_orthonormal S1 S2 : {subset S1 <= S2} -> uniq S1 -> orthonormal S2 -> orthonormal S1. Proof. -move=> sS12 uniqS1 /orthonormalP[_ oS1]. +move=> sS12 uniqS1 /orthonormalP[_ oS1]. by apply/orthonormalP; split; last apply: sub_in2 sS12 _ _. Qed. @@ -1386,7 +1386,7 @@ Qed. Lemma cfRes_is_multiplicative : multiplicative cfRes. Proof. -split=> [phi psi|]; [apply/cfunP=> x | exact: cfRes_cfun1]. +split=> [phi psi|]; [apply/cfunP=> x | exact: cfRes_cfun1]. by rewrite !cfunElock mulrnAr mulrnAl -mulrnA mulnb andbb. Qed. Canonical cfRes_rmorphism := AddRMorphism cfRes_is_multiplicative. @@ -1489,7 +1489,7 @@ Canonical cfMorph_linear := Linear cfMorph_is_linear. Fact cfMorph_is_multiplicative : multiplicative cfMorph. Proof. -split=> [phi psi|]; [apply/cfunP=> x | exact: cfMorph_cfun1]. +split=> [phi psi|]; [apply/cfunP=> x | exact: cfMorph_cfun1]. by rewrite !cfunElock mulrnAr mulrnAl -mulrnA mulnb andbb. Qed. Canonical cfMorph_rmorphism := AddRMorphism cfMorph_is_multiplicative. @@ -1567,7 +1567,7 @@ Canonical cfIsom_unlockable := [unlockable of cfIsom]. Lemma cfIsomE phi x : x \in G -> cfIsom phi (f x) = phi x. Proof. -move=> Gx; rewrite unlock cfMorphE //= /restrm ?defG ?cfRes_id ?invmE //. +move=> Gx; rewrite unlock cfMorphE //= /restrm ?defG ?cfRes_id ?invmE //. by rewrite -defR mem_morphim. Qed. @@ -1751,7 +1751,7 @@ Lemma sub_cfker_mod (A : {set gT}) K (psi : 'CF(G / K)) : (A \subset cfker (psi %% K)) = (A / K \subset cfker psi)%g. Proof. by move=> nsKG nKA; rewrite -(quotientSGK nKA) ?quotient_cfker_mod ?cfker_mod. -Qed. +Qed. Lemma cfker_quo H phi : H <| G -> H \subset cfker (phi) -> cfker (phi / H) = (cfker phi / H)%g. @@ -1872,7 +1872,7 @@ Proof. by apply: cforder_inj_rmorph cfSdprod_inj. Qed. End SDproduct. -Section DProduct. +Section DProduct. Variables (gT : finGroupType) (G K H : {group gT}). Hypothesis KxH : K \x H = G. @@ -2065,7 +2065,7 @@ by rewrite -[P j](mem_enum P) r_j. Qed. Lemma cfBigdprodi_iso i : P i -> isometry (@cfBigdprodi i). -Proof. by move=> Pi phi psi; rewrite cfDprodl_iso Pi !cfRes_id. Qed. +Proof. by move=> Pi phi psi; rewrite cfDprodl_iso Pi !cfRes_id. Qed. Definition cfBigdprod (phi : forall i, 'CF(A i)) := \prod_(i | P i) cfBigdprodi (phi i). @@ -2321,7 +2321,7 @@ Lemma cfIndM phi psi: H \subset G -> Proof. move=> HsG; apply/cfun_inP=> x Gx; rewrite !cfIndE // !cfunE !cfIndE // -mulrA. congr (_ * _); rewrite mulr_suml; apply: eq_bigr=> i iG; rewrite !cfunE. -case:(boolP (x^i \in H))=> xJi; last by rewrite cfun0gen ?mul0r ?genGid. +case: (boolP (x^i \in H))=> xJi; last by rewrite cfun0gen ?mul0r ?genGid. by rewrite !cfResE //; congr (_*_); rewrite cfunJgen ?genGid. Qed. |
