aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/character/classfun.v
diff options
context:
space:
mode:
authorCyril Cohen2017-11-23 16:33:36 +0100
committerCyril Cohen2018-02-06 13:54:37 +0100
commitfafd4dac5315e1d4e071b0044a50a16360b31964 (patch)
tree5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/character/classfun.v
parent835467324db450c8fb8971e477cc4d82fa3e861b (diff)
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/character/classfun.v')
-rw-r--r--mathcomp/character/classfun.v20
1 files changed, 10 insertions, 10 deletions
diff --git a/mathcomp/character/classfun.v b/mathcomp/character/classfun.v
index 54cbc41..81c26ab 100644
--- a/mathcomp/character/classfun.v
+++ b/mathcomp/character/classfun.v
@@ -464,7 +464,7 @@ Notation "{ 'in' CFD , 'isometry' tau , 'to' CFR }" :=
(at level 0, format "{ 'in' CFD , 'isometry' tau , 'to' CFR }")
: type_scope.
-Section ClassFun.
+Section ClassFun.
Variables (gT : finGroupType) (G : {group gT}).
Implicit Types (A B : {set gT}) (H K : {group gT}) (phi psi xi : 'CF(G)).
@@ -1123,7 +1123,7 @@ Qed.
Lemma eq_pairwise_orthogonal R S :
perm_eq R S -> pairwise_orthogonal R = pairwise_orthogonal S.
Proof.
-apply: catCA_perm_subst R S => R S S'.
+apply: catCA_perm_subst R S => R S S'.
rewrite !pairwise_orthogonal_cat !orthogonal_catr (orthogonal_sym R S) -!andbA.
by do !bool_congr.
Qed.
@@ -1201,7 +1201,7 @@ Qed.
Lemma sub_orthonormal S1 S2 :
{subset S1 <= S2} -> uniq S1 -> orthonormal S2 -> orthonormal S1.
Proof.
-move=> sS12 uniqS1 /orthonormalP[_ oS1].
+move=> sS12 uniqS1 /orthonormalP[_ oS1].
by apply/orthonormalP; split; last apply: sub_in2 sS12 _ _.
Qed.
@@ -1386,7 +1386,7 @@ Qed.
Lemma cfRes_is_multiplicative : multiplicative cfRes.
Proof.
-split=> [phi psi|]; [apply/cfunP=> x | exact: cfRes_cfun1].
+split=> [phi psi|]; [apply/cfunP=> x | exact: cfRes_cfun1].
by rewrite !cfunElock mulrnAr mulrnAl -mulrnA mulnb andbb.
Qed.
Canonical cfRes_rmorphism := AddRMorphism cfRes_is_multiplicative.
@@ -1489,7 +1489,7 @@ Canonical cfMorph_linear := Linear cfMorph_is_linear.
Fact cfMorph_is_multiplicative : multiplicative cfMorph.
Proof.
-split=> [phi psi|]; [apply/cfunP=> x | exact: cfMorph_cfun1].
+split=> [phi psi|]; [apply/cfunP=> x | exact: cfMorph_cfun1].
by rewrite !cfunElock mulrnAr mulrnAl -mulrnA mulnb andbb.
Qed.
Canonical cfMorph_rmorphism := AddRMorphism cfMorph_is_multiplicative.
@@ -1567,7 +1567,7 @@ Canonical cfIsom_unlockable := [unlockable of cfIsom].
Lemma cfIsomE phi x : x \in G -> cfIsom phi (f x) = phi x.
Proof.
-move=> Gx; rewrite unlock cfMorphE //= /restrm ?defG ?cfRes_id ?invmE //.
+move=> Gx; rewrite unlock cfMorphE //= /restrm ?defG ?cfRes_id ?invmE //.
by rewrite -defR mem_morphim.
Qed.
@@ -1751,7 +1751,7 @@ Lemma sub_cfker_mod (A : {set gT}) K (psi : 'CF(G / K)) :
(A \subset cfker (psi %% K)) = (A / K \subset cfker psi)%g.
Proof.
by move=> nsKG nKA; rewrite -(quotientSGK nKA) ?quotient_cfker_mod ?cfker_mod.
-Qed.
+Qed.
Lemma cfker_quo H phi :
H <| G -> H \subset cfker (phi) -> cfker (phi / H) = (cfker phi / H)%g.
@@ -1872,7 +1872,7 @@ Proof. by apply: cforder_inj_rmorph cfSdprod_inj. Qed.
End SDproduct.
-Section DProduct.
+Section DProduct.
Variables (gT : finGroupType) (G K H : {group gT}).
Hypothesis KxH : K \x H = G.
@@ -2065,7 +2065,7 @@ by rewrite -[P j](mem_enum P) r_j.
Qed.
Lemma cfBigdprodi_iso i : P i -> isometry (@cfBigdprodi i).
-Proof. by move=> Pi phi psi; rewrite cfDprodl_iso Pi !cfRes_id. Qed.
+Proof. by move=> Pi phi psi; rewrite cfDprodl_iso Pi !cfRes_id. Qed.
Definition cfBigdprod (phi : forall i, 'CF(A i)) :=
\prod_(i | P i) cfBigdprodi (phi i).
@@ -2321,7 +2321,7 @@ Lemma cfIndM phi psi: H \subset G ->
Proof.
move=> HsG; apply/cfun_inP=> x Gx; rewrite !cfIndE // !cfunE !cfIndE // -mulrA.
congr (_ * _); rewrite mulr_suml; apply: eq_bigr=> i iG; rewrite !cfunE.
-case:(boolP (x^i \in H))=> xJi; last by rewrite cfun0gen ?mul0r ?genGid.
+case: (boolP (x^i \in H))=> xJi; last by rewrite cfun0gen ?mul0r ?genGid.
by rewrite !cfResE //; congr (_*_); rewrite cfunJgen ?genGid.
Qed.