diff options
| author | Georges Gonthier | 2019-05-08 09:43:34 +0200 |
|---|---|---|
| committer | Georges Gonthier | 2019-05-17 09:04:50 +0200 |
| commit | 5d7bd2ea2a0a28fb275da8ba2e2c0dc5a33d1034 (patch) | |
| tree | f193a80ae41a42e5f877a932b136d37f9d598c10 /mathcomp/character/classfun.v | |
| parent | 51b9988f608625c60184dbe90133d64cdaa2a1f9 (diff) | |
refactor `seq` permutation theory
- Change the naming of permutation lemmas so they conform to a
consistent policy: `perm_eq` lemmas have a `perm_` (_not_ `perm_eq`)
prefix, or sometimes a `_perm` suffix for lemmas that _prove_ `perm_eq`
using a property when there is also a lemma _using_ `perm_eq` for the
same property. Lemmas that do not concern `perm_eq` do _not_ have
`perm` in their name.
- Change the definition of `permutations` for a time- and space-
back-to-front generation algorithm.
- Add frequency tally operations `tally`, `incr_tally`, `wf_tally` and
`tally_seq`, used by the improved `permutation` algorithm.
- add deprecated aliases for renamed lemmas
Diffstat (limited to 'mathcomp/character/classfun.v')
| -rw-r--r-- | mathcomp/character/classfun.v | 4 |
1 files changed, 2 insertions, 2 deletions
diff --git a/mathcomp/character/classfun.v b/mathcomp/character/classfun.v index 65167b5..c35cdd6 100644 --- a/mathcomp/character/classfun.v +++ b/mathcomp/character/classfun.v @@ -1173,7 +1173,7 @@ Qed. Lemma eq_orthonormal R S : perm_eq R S -> orthonormal R = orthonormal S. Proof. -move=> eqRS; rewrite !orthonormalE (eq_all_r (perm_eq_mem eqRS)). +move=> eqRS; rewrite !orthonormalE (eq_all_r (perm_mem eqRS)). by rewrite (eq_pairwise_orthogonal eqRS). Qed. @@ -2413,7 +2413,7 @@ set Su := map _ S => sSuS freeS; have uniqS := free_uniq freeS. have uniqSu: uniq Su by rewrite (map_inj_uniq cfAut_inj). have{sSuS} sSuS: {subset Su <= S} by move=> _ /mapP[phi Sphi ->]; apply: sSuS. have [|_ eqSuS] := uniq_min_size uniqSu sSuS; first by rewrite size_map. -by rewrite (perm_free (uniq_perm_eq uniqSu uniqS eqSuS)). +by rewrite (perm_free (uniq_perm uniqSu uniqS eqSuS)). Qed. Lemma cfAut_on A phi : (phi^u \in 'CF(G, A)) = (phi \in 'CF(G, A)). |
