aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/character/classfun.v
diff options
context:
space:
mode:
authorGeorges Gonthier2019-11-26 17:28:36 +0100
committerGeorges Gonthier2019-11-27 17:13:20 +0100
commit4bd5ba38e4f6c6456a8fcc39364a67b51fde92f2 (patch)
tree3829794151b4611775d602cb721e5507393671cc /mathcomp/character/classfun.v
parentf43a928dc62abd870c3b15b4147b2ad76029b701 (diff)
Explicit `bigop` enumeration handling
Added lemmas `big_enum_cond`, `big_enum` and `big_enumP` to handle more explicitly big ops iterating over explicit enumerations in a `finType`. The previous practice was to rely on the convertibility between `enum A` and `filter A (index_enum T)`, sometimes explicitly via the `filter_index_enum` equality, more often than not implicitly. Both are likely to fail after the integration of `finmap`, as the `choiceType` theory can’t guarantee that the order in selected enumerations is consistent. For this reason `big_enum` and the related (but currently unused) `big_image` lemmas are restricted to the abelian case. The `big_enumP` lemma can be used to handle enumerations in the non-abelian case, as explained in the `bigop.v` internal documentation. The Changelog entry enjoins clients to stop relying on either `filter_index_enum` and convertibility (though this PR still provides both), and warns about the restriction of the `big_image` lemma set to the abelian case, as it it a possible source of incompatibility.
Diffstat (limited to 'mathcomp/character/classfun.v')
-rw-r--r--mathcomp/character/classfun.v20
1 files changed, 9 insertions, 11 deletions
diff --git a/mathcomp/character/classfun.v b/mathcomp/character/classfun.v
index c35cdd6..3f461e3 100644
--- a/mathcomp/character/classfun.v
+++ b/mathcomp/character/classfun.v
@@ -528,8 +528,7 @@ Qed.
Lemma cfun_on_sum A :
'CF(G, A) = (\sum_(xG in classes G | xG \subset A) <['1_xG]>)%VS.
Proof.
-rewrite ['CF(G, A)]span_def big_map big_filter.
-by apply: eq_bigl => xG; rewrite !inE.
+by rewrite ['CF(G, A)]span_def big_image; apply: eq_bigl => xG; rewrite !inE.
Qed.
Lemma cfun_onP A phi :
@@ -2047,15 +2046,14 @@ Lemma cfBigdprodEi i (phi : 'CF(A i)) x :
P i -> (forall j, P j -> x j \in A j) ->
cfBigdprodi phi (\prod_(j | P j) x j)%g = phi (x i).
Proof.
-set r := enum P => Pi /forall_inP; have r_i: i \in r by rewrite mem_enum.
-have:= bigdprodWcp defG; rewrite -big_andE -!(big_filter _ P) filter_index_enum.
-rewrite -/r big_all => defGr /allP Ax.
-rewrite (perm_bigcprod defGr Ax (perm_to_rem r_i)) big_cons cfDprodEl ?Pi //.
-- by rewrite cfRes_id.
-- by rewrite Ax.
-rewrite big_seq group_prod // => j; rewrite mem_rem_uniq ?enum_uniq //.
-case/andP=> i'j /= r_j; apply/mem_gen/bigcupP; exists j; last exact: Ax.
-by rewrite -[P j](mem_enum P) r_j.
+have [r big_r [Ur mem_r] _] := big_enumP P => Pi AxP.
+have:= bigdprodWcp defG; rewrite -!big_r => defGr.
+have{AxP} [r_i Axr]: i \in r /\ {in r, forall j, x j \in A j}.
+ by split=> [|j]; rewrite mem_r // => /AxP.
+rewrite (perm_bigcprod defGr Axr (perm_to_rem r_i)) big_cons.
+rewrite cfDprodEl ?Pi ?cfRes_id ?Axr // big_seq group_prod // => j.
+rewrite mem_rem_uniq // => /andP[i'j /= r_j].
+by apply/mem_gen/bigcupP; exists j; [rewrite -mem_r r_j | apply: Axr].
Qed.
Lemma cfBigdprodi_iso i : P i -> isometry (@cfBigdprodi i).