diff options
| author | affeldt-aist | 2020-11-20 12:41:11 +0900 |
|---|---|---|
| committer | GitHub | 2020-11-20 12:41:11 +0900 |
| commit | 3bb1ccc63170e3e71ef9d5b62758b6fdb1c4371c (patch) | |
| tree | 076b8d8c53eaaf424258388bbd0068970c55b85f /mathcomp/character/classfun.v | |
| parent | 676a9266ad77232ab198c86a6a3a3f3f6ba53cc0 (diff) | |
| parent | e565f8d9bebd4fd681c34086d5448dbaebc11976 (diff) | |
Merge pull request #658 from CohenCyril/duplicate_clear
Removing duplicate clears and turning the warning into an error
Diffstat (limited to 'mathcomp/character/classfun.v')
| -rw-r--r-- | mathcomp/character/classfun.v | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/mathcomp/character/classfun.v b/mathcomp/character/classfun.v index ccfc37b..2bea267 100644 --- a/mathcomp/character/classfun.v +++ b/mathcomp/character/classfun.v @@ -1093,7 +1093,7 @@ Lemma pairwise_orthogonalP S : Proof. rewrite /pairwise_orthogonal /=; case notS0: (~~ _); last by right; case. elim: S notS0 => [|phi S IH] /=; first by left. -rewrite inE eq_sym andbT => /norP[nz_phi /IH{IH}IH]. +rewrite inE eq_sym andbT => /norP[nz_phi /IH{}IH]. have [opS | not_opS] := allP; last first. right=> [[/andP[notSp _] opS]]; case: not_opS => psi Spsi /=. by rewrite opS ?mem_head 1?mem_behead // (memPnC notSp). @@ -1306,7 +1306,7 @@ Lemma isometry_of_free S f : Proof. move=> freeS If; have defS := free_span freeS. have [tau /(_ freeS (size_map f S))Dtau] := linear_of_free S (map f S). -have{Dtau} Dtau: {in S, tau =1 f}. +have{} Dtau: {in S, tau =1 f}. by move=> _ /(nthP 0)[i ltiS <-]; rewrite -!(nth_map 0 0) ?Dtau. exists tau => // _ _ /defS[a -> _] /defS[b -> _]. rewrite !{1}linear_sum !{1}cfdot_suml; apply/eq_big_seq=> xi1 Sxi1. @@ -2229,7 +2229,7 @@ rewrite (set_partition_big _ (rcosets_partition_mul H K)) ?big_imset /=. apply: eq_bigr => y Hy; rewrite rcosetE norm_rlcoset ?(subsetP nKH) //. rewrite -lcosetE mulr_natl big_imset /=; last exact: in2W (mulgI _). by rewrite -sumr_const; apply: eq_bigr => z Kz; rewrite conjgM cfunJ. -have [{nKH}nKH /isomP[injf _]] := sdprod_isom defG. +have [{}nKH /isomP[injf _]] := sdprod_isom defG. apply: can_in_inj (fun Ky => invm injf (coset K (repr Ky))) _ => y Hy. by rewrite rcosetE -val_coset ?(subsetP nKH) // coset_reprK invmE. Qed. @@ -2410,7 +2410,7 @@ Lemma map_cfAut_free S : cfAut_closed u S -> free S -> free (map (cfAut u) S). Proof. set Su := map _ S => sSuS freeS; have uniqS := free_uniq freeS. have uniqSu: uniq Su by rewrite (map_inj_uniq cfAut_inj). -have{sSuS} sSuS: {subset Su <= S} by move=> _ /mapP[phi Sphi ->]; apply: sSuS. +have{} sSuS: {subset Su <= S} by move=> _ /mapP[phi Sphi ->]; apply: sSuS. have [|_ eqSuS] := uniq_min_size uniqSu sSuS; first by rewrite size_map. by rewrite (perm_free (uniq_perm uniqSu uniqS eqSuS)). Qed. |
