diff options
| author | Cyril Cohen | 2017-11-23 16:33:36 +0100 |
|---|---|---|
| committer | Cyril Cohen | 2018-02-06 13:54:37 +0100 |
| commit | fafd4dac5315e1d4e071b0044a50a16360b31964 (patch) | |
| tree | 5b66c3d67e2b146e3a8013496379b96dd60dc75a /mathcomp/character/character.v | |
| parent | 835467324db450c8fb8971e477cc4d82fa3e861b (diff) | |
running semi-automated linting on the whole library
Diffstat (limited to 'mathcomp/character/character.v')
| -rw-r--r-- | mathcomp/character/character.v | 20 |
1 files changed, 10 insertions, 10 deletions
diff --git a/mathcomp/character/character.v b/mathcomp/character/character.v index 0738b14..6408b0b 100644 --- a/mathcomp/character/character.v +++ b/mathcomp/character/character.v @@ -382,7 +382,7 @@ Lemma prod_repr_lin n2 (rG1 : reprG 1) (rG2 : reprG n2) : {in G, forall x, let cast_n2 := esym (mul1n n2) in prod_repr rG1 rG2 x = castmx (cast_n2, cast_n2) (rG1 x 0 0 *: rG2 x)}. Proof. -move=> x Gx /=; set cast_n2 := esym _; rewrite /prod_repr /= !mxE !lshift0. +move=> x Gx /=; set cast_n2 := esym _; rewrite /prod_repr /= !mxE !lshift0. apply/matrixP=> i j; rewrite castmxE /=. do 2![rewrite mxE; case: splitP => [? ? | []//]]. by congr ((_ *: rG2 x) _ _); apply: val_inj. @@ -511,7 +511,7 @@ Proof. by move=> A B; rewrite /xcfun linearB mulmxBl !mxE. Qed. Canonical xcfun_additive phi := Additive (xcfun_is_additive phi). Lemma xcfunZr a phi A : xcfun phi (a *: A) = a * xcfun phi A. -Proof. by rewrite /xcfun linearZ -scalemxAl mxE. Qed. +Proof. by rewrite /xcfun linearZ -scalemxAl mxE. Qed. (* In order to add a second canonical structure on xcfun *) Definition xcfun_r_head k A phi := let: tt := k in xcfun phi A. @@ -530,7 +530,7 @@ Lemma xcfunZl a phi A : xcfun (a *: phi) A = a * xcfun phi A. Proof. rewrite /xcfun !mxE big_distrr; apply: eq_bigr => i _ /=. by rewrite !mxE cfunE mulrCA. -Qed. +Qed. Lemma xcfun_repr n rG A : xcfun (@cfRepr n rG) A = \tr (gring_op rG A). Proof. @@ -1431,7 +1431,7 @@ Proof. apply/eqP/andP=> [|[/eqP-> /pred2P[]-> //]]; last by rewrite !scale0r. move/(congr1 (cfdotr 'chi__)) => /= eq_ai_bj. move: {eq_ai_bj}(eq_ai_bj i) (esym (eq_ai_bj j)); rewrite !cfdotZl !cfdot_irr. -by rewrite !mulr_natr !mulrb !eqxx eq_sym orbC; case: ifP => _ -> //= ->. +by rewrite !mulr_natr !mulrb !eqxx eq_sym orbC; case: ifP => _ -> //= ->. Qed. Lemma eq_signed_irr (s t : bool) i j : @@ -1624,7 +1624,7 @@ have:= (normC_sum_upper _ Kx) i; rewrite !cfunE => -> // {i Ci} i _. have chi_i_ge0: 0 <= '[chi, 'chi_i]. by rewrite Cnat_ge0 ?Cnat_cfdot_char_irr. by rewrite !cfunE normrM (normr_idP _) ?ler_wpmul2l ?char1_ge_norm ?irr_char. -Qed. +Qed. Lemma TI_cfker_irr : \bigcap_i cfker 'chi[G]_i = [1]. Proof. @@ -1710,7 +1710,7 @@ Lemma cfRes_irr_irr chi : chi \is a character -> 'Res[H] chi \in irr H -> chi \in irr G. Proof. have [sHG /char_reprP[rG ->] | not_sHG Nchi] := boolP (H \subset G). - rewrite -(cfRepr_sub _ sHG) => /irr_reprP[rH irrH def_rH]; apply/irr_reprP. + rewrite -(cfRepr_sub _ sHG) => /irr_reprP[rH irrH def_rH]; apply/irr_reprP. suffices /subg_mx_irr: mx_irreducible (subg_repr rG sHG) by exists rG. by apply: mx_rsim_irr irrH; apply/cfRepr_rsimP/eqP. rewrite cfResEout // => /irrP[j Dchi_j]; apply/lin_char_irr/cfRes_lin_lin=> //. @@ -2152,7 +2152,7 @@ Lemma cfBigdprod_eq1 phi : Proof. move=> Nphi; set Phi := cfBigdprod defG phi. apply/eqP/eqfun_inP=> [Phi1 i Pi | phi1]; last first. - by apply: big1 => i /phi1->; rewrite rmorph1. + by apply: big1 => i /phi1->; rewrite rmorph1. have Phi1_1: Phi 1%g = 1 by rewrite Phi1 cfun1E group1. have nz_Phi1: Phi 1%g != 0 by rewrite Phi1_1 oner_eq0. have [_ <-] := cfBigdprodK nz_Phi1 Pi. @@ -2484,7 +2484,7 @@ Lemma lin_char_group G : {morph cF : u v / (u * v)%g >-> (u * v)%R}, forall k, {morph cF : u / (u^+ k)%g >-> u ^+ k}, {morph cF: u / u^-1%g >-> u^-1%CF} - & {mono cF: u / #[u]%g >-> #[u]%CF} ]}}. + & {mono cF: u / #[u]%g >-> #[u]%CF} ]}}. Proof. pose linT := {i : Iirr G | 'chi_i \is a linear_char}. pose cF (u : linT) := 'chi_(sval u). @@ -2567,7 +2567,7 @@ Variables (n : nat) (rG : mx_representation [fieldType of algC] G n). Definition det_repr_mx x : 'M_1 := (\det (rG x))%:M. -Fact det_is_repr : mx_repr G det_repr_mx. +Fact det_is_repr : mx_repr G det_repr_mx. Proof. split=> [|g h Gg Gh]; first by rewrite /det_repr_mx repr_mx1 det1. by rewrite /det_repr_mx repr_mxM // det_mulmx !mulmxE scalar_mxM. @@ -2725,7 +2725,7 @@ apply/eqP/is_scalar_mxP=> [|[c rG_c]]. by case/max_cfRepr_norm_scalar=> // c; exists c. rewrite -(sqrCK (char1_ge0 (cfRepr_char rG))) normC_def; congr (sqrtC _). rewrite expr2 -{2}(mulgV x) -char_inv ?cfRepr_char ?cfunE ?groupM ?groupV //. -rewrite Gx group1 repr_mx1 repr_mxM ?repr_mxV ?groupV // !mulrb rG_c. +rewrite Gx group1 repr_mx1 repr_mxM ?repr_mxV ?groupV // !mulrb rG_c. by rewrite invmx_scalar -scalar_mxM !mxtrace_scalar mulrnAr mulrnAl mulr_natl. Qed. |
