aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/character/character.v
diff options
context:
space:
mode:
authorAnton Trunov2018-11-27 12:17:47 +0100
committerAnton Trunov2018-12-04 12:43:20 +0100
commit8c82657e7692049dde4a4c44a2ea53d0c4fa7cb5 (patch)
treec973a8517cb257f127c60299e86d3f553ba51462 /mathcomp/character/character.v
parentadd6e85884691faef1bf8742e803374815672cc2 (diff)
Document parameter names whenever possible
As suggested by @ggonthier [here](https://github.com/math-comp/math-comp/pull/249#pullrequestreview-177938295) > One of the design ideas for the `Arguments` command was that it would allow to centralise the documentation of the application of constants. In that spirit it would be in my opinion better to make as much use of this as possible, and to document the parameter names whenever possible, especially that of implicit parameters. and [here](https://github.com/math-comp/math-comp/pull/253#discussion_r237434163): > As a general rule, defined functional constants should have maximal prenex implicit arguments, as this facilitates their use as arguments to functionals, because this mimics the way function constants are treated in functional programming languages with Hindley-Milner type inference. Conversely, lemmas and theorems should have on-demand implicit arguments, possibly interspersed with explicit ones, as it's fairly common for other lemmas to have universally quantified premises; also, this makes it easier to specify such arguments with the apply: tactic. This policy may be amended for lemmas that are used as functional arguments, such as reflection or cancellation lemmas. Unfortunately there is currently no easy way to tell Coq to use different defaults for definitions and lemmas, so MathComp sticks to the on-demand default, as there are significantly more lemmas than definition, and use the Prenex Implicits to redress matters in bulk for definitions. However, this is not completely systematic, and is sometimes omitted for constants that are not used as functional arguments in the library, or inside the sections in which the definition occur, since such commands need to be repeated after the section is closed. Since Arguments commands should document the intended constant usage as best as possible, they should follow the implicits policy - even in cases such as this where the Prenex Implicits had been skipped.
Diffstat (limited to 'mathcomp/character/character.v')
-rw-r--r--mathcomp/character/character.v26
1 files changed, 13 insertions, 13 deletions
diff --git a/mathcomp/character/character.v b/mathcomp/character/character.v
index 6752623..a657fa5 100644
--- a/mathcomp/character/character.v
+++ b/mathcomp/character/character.v
@@ -544,7 +544,7 @@ Notation xcfun_r A := (xcfun_r_head tt A).
Notation "phi .[ A ]" := (xcfun phi A) : cfun_scope.
Definition pred_Nirr gT B := #|@classes gT B|.-1.
-Arguments pred_Nirr _ _%g.
+Arguments pred_Nirr {gT} B%g.
Notation Nirr G := (pred_Nirr G).+1.
Notation Iirr G := 'I_(Nirr G).
@@ -587,7 +587,7 @@ Proof. by apply: onW_bij; exists irr_of_socle. Qed.
End IrrClassDef.
Prenex Implicits socle_of_IirrK irr_of_socleK.
-Arguments socle_of_Iirr _ _%R.
+Arguments socle_of_Iirr {gT G%G} i%R.
Notation "''Chi_' i" := (irr_repr (socle_of_Iirr i))
(at level 8, i at level 2, format "''Chi_' i").
@@ -598,7 +598,7 @@ Definition irr_def gT B : (Nirr B).-tuple 'CF(B) :=
[tuple of mkseq irr_of (Nirr B)].
Definition irr := locked_with irr_key irr_def.
-Arguments irr _ _%g.
+Arguments irr {gT} B%g.
Notation "''chi_' i" := (tnth (irr _) i%R)
(at level 8, i at level 2, format "''chi_' i") : ring_scope.
@@ -621,7 +621,7 @@ Proof. by move/Iirr1_neq0; exists (inord 1). Qed.
Lemma irrRepr i : cfRepr 'Chi_i = 'chi_i.
Proof.
-rewrite [irr]unlock (tnth_nth 0) nth_mkseq // -[<<G>>]/(gval _) genGidG.
+rewrite [@irr]unlock (tnth_nth 0) nth_mkseq // -[<<G>>]/(gval _) genGidG.
by rewrite cfRes_id inord_val.
Qed.
@@ -816,7 +816,7 @@ Qed.
End IrrClass.
-Arguments cfReg _ _%g.
+Arguments cfReg {gT} B%g.
Prenex Implicits cfIirr.
Arguments irr_inj {gT G} [x1 x2].
@@ -1334,7 +1334,7 @@ Qed.
End OrthogonalityRelations.
-Arguments character_table _ _%g.
+Arguments character_table {gT} G%g.
Section InnerProduct.
@@ -1565,7 +1565,7 @@ Qed.
End IrrConstt.
-Arguments irr_constt _ _%g _%CF.
+Arguments irr_constt {gT B%g} phi%CF.
Section Kernel.
@@ -1733,7 +1733,7 @@ Qed.
End Restrict.
-Arguments Res_Iirr _ _%g _%g _%R.
+Arguments Res_Iirr {gT A%g} B%g i%R.
Section MoreConstt.
@@ -1870,7 +1870,7 @@ Proof. by apply/eqP; rewrite isom_Iirr_eq0. Qed.
End Isom.
-Arguments isom_Iirr_inj [aT rT G f R] isoGR [x1 x2].
+Arguments isom_Iirr_inj {aT rT G f R} isoGR [i1 i2] : rename.
Section IsomInv.
@@ -1938,7 +1938,7 @@ Qed.
End Sdprod.
-Arguments sdprod_Iirr_inj [gT K H G] defG [x1 x2].
+Arguments sdprod_Iirr_inj {gT K H G} defG [i1 i2] : rename.
Section DProd.
@@ -2089,7 +2089,7 @@ Proof. by apply/(canLR dprod_IirrK); rewrite dprod_Iirr0. Qed.
End DProd.
-Arguments dprod_Iirr_inj [gT G K H] KxH [x1 x2].
+Arguments dprod_Iirr_inj {gT G K H} KxH [i1 i2] : rename.
Lemma dprod_IirrC (gT : finGroupType) (G K H : {group gT})
(KxH : K \x H = G) (HxK : H \x K = G) i j :
@@ -2257,7 +2257,7 @@ Qed.
End Aut.
-Arguments aut_Iirr_inj [gT G] u [x1 x2].
+Arguments aut_Iirr_inj {gT G} u [i1 i2] : rename.
Section Coset.
@@ -2993,4 +2993,4 @@ Proof. by move/cfker_Ind->; rewrite ?irr_neq0 ?irr_char. Qed.
End Induced.
-Arguments Ind_Iirr _ _%g _%g _%R. \ No newline at end of file
+Arguments Ind_Iirr {gT A%g} B%g i%R.