aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/character/character.v
diff options
context:
space:
mode:
authorGeorges Gonthier2018-12-13 12:55:43 +0100
committerGeorges Gonthier2018-12-13 12:55:43 +0100
commit0b1ea03dafcf36880657ba910eec28ab78ccd018 (patch)
tree60a84ff296299226d530dd0b495be24fd7675748 /mathcomp/character/character.v
parentfa9b7b19fc0409f3fdfa680e08f40a84594e8307 (diff)
Adjust implicits of cancellation lemmas
Like injectivity lemmas, instances of cancellation lemmas (whose conclusion is `cancel ? ?`, `{in ?, cancel ? ?}`, `pcancel`, or `ocancel`) are passed to generic lemmas such as `canRL` or `canLR_in`. Thus such lemmas should not have trailing on-demand implicits _just before_ the `cancel` conclusion, as these would be inconvenient to insert (requiring essentially an explicit eta-expansion). We therefore use `Arguments` or `Prenex Implicits` directives to make all such arguments maximally inserted implicits. We don’t, however make other arguments implicit, so as not to spoil direct instantiation of the lemmas (in, e.g., `rewrite -[y](invmK injf)`). We have also tried to do this with lemmas whose statement matches a `cancel`, i.e., ending in `forall x, g (E[x]) = x` (where pattern unification will pick up `f = fun x => E[x]`). We also adjusted implicits of a few stray injectivity lemmas, and defined constants. We provide a shorthand for reindexing a bigop with a permutation. Finally we used the new implicit signatures to simplify proofs that use injectivity or cancellation lemmas.
Diffstat (limited to 'mathcomp/character/character.v')
-rw-r--r--mathcomp/character/character.v11
1 files changed, 8 insertions, 3 deletions
diff --git a/mathcomp/character/character.v b/mathcomp/character/character.v
index 9a61ebe..783c46f 100644
--- a/mathcomp/character/character.v
+++ b/mathcomp/character/character.v
@@ -817,7 +817,9 @@ Qed.
End IrrClass.
Arguments cfReg {gT} B%g.
-Prenex Implicits cfIirr.
+Prenex Implicits cfIirr irrK.
+Arguments irrP {gT G xi}.
+Arguments irr_reprP {gT G xi}.
Arguments irr_inj {gT G} [x1 x2].
Section IsChar.
@@ -1334,6 +1336,8 @@ Qed.
End OrthogonalityRelations.
+Prenex Implicits irr_class class_Iirr irr_classK.
+Arguments class_IirrK {gT G%G} [xG%g] GxG : rename.
Arguments character_table {gT} G%g.
Section InnerProduct.
@@ -1353,7 +1357,7 @@ Lemma irr_orthonormal : orthonormal (irr G).
Proof.
apply/orthonormalP; split; first exact: free_uniq (irr_free G).
move=> _ _ /irrP[i ->] /irrP[j ->].
-by rewrite cfdot_irr (inj_eq (@irr_inj _ G)).
+by rewrite cfdot_irr (inj_eq irr_inj).
Qed.
Lemma coord_cfdot phi i : coord (irr G) i phi = '[phi, 'chi_i].
@@ -1436,7 +1440,7 @@ Qed.
Lemma eq_signed_irr (s t : bool) i j :
((-1) ^+ s *: 'chi[G]_i == (-1) ^+ t *: 'chi_j) = (s == t) && (i == j).
-Proof. by rewrite eq_scaled_irr signr_eq0 (inj_eq (@signr_inj _)). Qed.
+Proof. by rewrite eq_scaled_irr signr_eq0 (inj_eq signr_inj). Qed.
Lemma eq_scale_irr a (i j : Iirr G) :
(a *: 'chi_i == a *: 'chi_j) = (a == 0) || (i == j).
@@ -2258,6 +2262,7 @@ Qed.
End Aut.
Arguments aut_Iirr_inj {gT G} u [i1 i2] : rename.
+Arguments conjC_IirrK {gT G} i : rename.
Section Coset.