aboutsummaryrefslogtreecommitdiff
path: root/mathcomp/basic/choice.v
diff options
context:
space:
mode:
authorEnrico Tassi2015-11-05 11:36:58 +0100
committerEnrico Tassi2015-11-05 16:26:24 +0100
commit14c9a3a752e8c21b239ff0800089271c5a5ddfb2 (patch)
tree8f7095e1702d5ad56003f8d87df84786902dfec0 /mathcomp/basic/choice.v
parent35124d2e255e5f88d99ddc65361d6997b0a2b751 (diff)
merge basic/ into ssreflect/
Diffstat (limited to 'mathcomp/basic/choice.v')
-rw-r--r--mathcomp/basic/choice.v688
1 files changed, 0 insertions, 688 deletions
diff --git a/mathcomp/basic/choice.v b/mathcomp/basic/choice.v
deleted file mode 100644
index 4146634..0000000
--- a/mathcomp/basic/choice.v
+++ /dev/null
@@ -1,688 +0,0 @@
-(* (c) Copyright 2006-2015 Microsoft Corporation and Inria. *)
-(* Distributed under the terms of CeCILL-B. *)
-Require Import mathcomp.ssreflect.ssreflect.
-From mathcomp
-Require Import ssrfun ssrbool eqtype ssrnat seq.
-
-(******************************************************************************)
-(* This file contains the definitions of: *)
-(* choiceType == interface for types with a choice operator. *)
-(* countType == interface for countable types (implies choiceType). *)
-(* subCountType == interface for types that are both subType and countType. *)
-(* xchoose exP == a standard x such that P x, given exP : exists x : T, P x *)
-(* when T is a choiceType. The choice depends only on the *)
-(* extent of P (in particular, it is independent of exP). *)
-(* choose P x0 == if P x0, a standard x such that P x. *)
-(* pickle x == a nat encoding the value x : T, where T is a countType. *)
-(* unpickle n == a partial inverse to pickle: unpickle (pickle x) = Some x *)
-(* pickle_inv n == a sharp partial inverse to pickle pickle_inv n = Some x *)
-(* if and only if pickle x = n. *)
-(* [choiceType of T for cT] == clone for T of the choiceType cT. *)
-(* [choiceType of T] == clone for T of the choiceType inferred for T. *)
-(* [countType of T for cT] == clone for T of the countType cT. *)
-(* [count Type of T] == clone for T of the countType inferred for T. *)
-(* [choiceMixin of T by <:] == Choice mixin for T when T has a subType p *)
-(* structure with p : pred cT and cT has a Choice *)
-(* structure; the corresponding structure is Canonical.*)
-(* [countMixin of T by <:] == Count mixin for a subType T of a countType. *)
-(* PcanChoiceMixin fK == Choice mixin for T, given f : T -> cT where cT has *)
-(* a Choice structure, a left inverse partial function *)
-(* g and fK : pcancel f g. *)
-(* CanChoiceMixin fK == Choice mixin for T, given f : T -> cT, g and *)
-(* fK : cancel f g. *)
-(* PcanCountMixin fK == Count mixin for T, given f : T -> cT where cT has *)
-(* a Countable structure, a left inverse partial *)
-(* function g and fK : pcancel f g. *)
-(* CanCountMixin fK == Count mixin for T, given f : T -> cT, g and *)
-(* fK : cancel f g. *)
-(* GenTree.tree T == generic n-ary tree type with nat-labeled nodes and *)
-(* T-labeled leaves, for example GenTree.Leaf (x : T), *)
-(* GenTree.Node 5 [:: t; t']. GenTree.tree is equipped *)
-(* with canonical eqType, choiceType, and countType *)
-(* instances, and so simple datatypes can be similarly *)
-(* equipped by encoding into GenTree.tree and using *)
-(* the mixins above. *)
-(* CodeSeq.code == bijection from seq nat to nat. *)
-(* CodeSeq.decode == bijection inverse to CodeSeq.code. *)
-(* In addition to the lemmas relevant to these definitions, this file also *)
-(* contains definitions of a Canonical choiceType and countType instances for *)
-(* all basic datatypes (e.g., nat, bool, subTypes, pairs, sums, etc.). *)
-(******************************************************************************)
-
-Set Implicit Arguments.
-Unset Strict Implicit.
-Unset Printing Implicit Defensive.
-
-(* Technical definitions about coding and decoding of nat sequences, which *)
-(* are used below to define various Canonical instances of the choice and *)
-(* countable interfaces. *)
-
-Module CodeSeq.
-
-(* Goedel-style one-to-one encoding of seq nat into nat. *)
-(* The code for [:: n1; ...; nk] has binary representation *)
-(* 1 0 ... 0 1 ... 1 0 ... 0 1 0 ... 0 *)
-(* <-----> <-----> <-----> *)
-(* nk 0s n2 0s n1 0s *)
-
-Definition code := foldr (fun n m => 2 ^ n * m.*2.+1) 0.
-
-Fixpoint decode_rec (v q r : nat) {struct q} :=
- match q, r with
- | 0, _ => [:: v]
- | q'.+1, 0 => v :: [rec 0, q', q']
- | q'.+1, 1 => [rec v.+1, q', q']
- | q'.+1, r'.+2 => [rec v, q', r']
- end where "[ 'rec' v , q , r ]" := (decode_rec v q r).
-
-Definition decode n := if n is 0 then [::] else [rec 0, n.-1, n.-1].
-
-Lemma decodeK : cancel decode code.
-Proof.
-have m2s: forall n, n.*2 - n = n by move=> n; rewrite -addnn addnK.
-case=> //= n; rewrite -[n.+1]mul1n -(expn0 2) -{3}[n]m2s.
-elim: n {2 4}n {1 3}0 => [|q IHq] [|[|r]] v //=; rewrite {}IHq ?mul1n ?m2s //.
-by rewrite expnSr -mulnA mul2n.
-Qed.
-
-Lemma codeK : cancel code decode.
-Proof.
-elim=> //= v s IHs; rewrite -[_ * _]prednK ?muln_gt0 ?expn_gt0 //=.
-rewrite -{3}[v]addn0; elim: v {1 4}0 => [|v IHv {IHs}] q.
- rewrite mul1n /= -{1}addnn -{4}IHs; move: (_ s) {IHs} => n.
- by elim: {1 3}n => //=; case: n.
-rewrite expnS -mulnA mul2n -{1}addnn -[_ * _]prednK ?muln_gt0 ?expn_gt0 //.
-by rewrite doubleS addSn /= addSnnS; elim: {-2}_.-1 => //=.
-Qed.
-
-Lemma ltn_code s : all (fun j => j < code s) s.
-Proof.
-elim: s => //= i s IHs; rewrite -[_.+1]muln1 leq_mul 1?ltn_expl //=.
-apply: sub_all IHs => j /leqW lejs; rewrite -[j.+1]mul1n leq_mul ?expn_gt0 //.
-by rewrite ltnS -[j]mul1n -mul2n leq_mul.
-Qed.
-
-Lemma gtn_decode n : all (ltn^~ n) (decode n).
-Proof. by rewrite -{1}[n]decodeK ltn_code. Qed.
-
-End CodeSeq.
-
-Section OtherEncodings.
-(* Miscellaneous encodings: option T -c-> seq T, T1 * T2 -c-> {i : T1 & T2} *)
-(* T1 + T2 -c-> option T1 * option T2, unit -c-> bool; bool -c-> nat is *)
-(* already covered in ssrnat by the nat_of_bool coercion, the odd predicate, *)
-(* and their "cancellation" lemma oddb. We use these encodings to propagate *)
-(* canonical structures through these type constructors so that ultimately *)
-(* all Choice and Countable instanced derive from nat and the seq and sigT *)
-(* constructors. *)
-
-Variables T T1 T2 : Type.
-
-Definition seq_of_opt := @oapp T _ (nseq 1) [::].
-Lemma seq_of_optK : cancel seq_of_opt ohead. Proof. by case. Qed.
-
-Definition tag_of_pair (p : T1 * T2) := @Tagged T1 p.1 (fun _ => T2) p.2.
-Definition pair_of_tag (u : {i : T1 & T2}) := (tag u, tagged u).
-Lemma tag_of_pairK : cancel tag_of_pair pair_of_tag. Proof. by case. Qed.
-Lemma pair_of_tagK : cancel pair_of_tag tag_of_pair. Proof. by case. Qed.
-
-Definition opair_of_sum (s : T1 + T2) :=
- match s with inl x => (Some x, None) | inr y => (None, Some y) end.
-Definition sum_of_opair p :=
- oapp (some \o @inr T1 T2) (omap (@inl _ T2) p.1) p.2.
-Lemma opair_of_sumK : pcancel opair_of_sum sum_of_opair. Proof. by case. Qed.
-
-Lemma bool_of_unitK : cancel (fun _ => true) (fun _ => tt).
-Proof. by case. Qed.
-
-End OtherEncodings.
-
-(* Generic variable-arity tree type, providing an encoding target for *)
-(* miscellaneous user datatypes. The GenTree.tree type can be combined with *)
-(* a sigT type to model multi-sorted concrete datatypes. *)
-Module GenTree.
-
-Section Def.
-
-Variable T : Type.
-
-Unset Elimination Schemes.
-Inductive tree := Leaf of T | Node of nat & seq tree.
-
-Definition tree_rect K IH_leaf IH_node :=
- fix loop t : K t := match t with
- | Leaf x => IH_leaf x
- | Node n f0 =>
- let fix iter_pair f : foldr (fun t => prod (K t)) unit f :=
- if f is t :: f' then (loop t, iter_pair f') else tt in
- IH_node n f0 (iter_pair f0)
- end.
-Definition tree_rec (K : tree -> Set) := @tree_rect K.
-Definition tree_ind K IH_leaf IH_node :=
- fix loop t : K t : Prop := match t with
- | Leaf x => IH_leaf x
- | Node n f0 =>
- let fix iter_conj f : foldr (fun t => and (K t)) True f :=
- if f is t :: f' then conj (loop t) (iter_conj f') else Logic.I
- in IH_node n f0 (iter_conj f0)
- end.
-
-Fixpoint encode t : seq (nat + T) :=
- match t with
- | Leaf x => [:: inr _ x]
- | Node n f => inl _ n.+1 :: rcons (flatten (map encode f)) (inl _ 0)
- end.
-
-Definition decode_step c fs :=
- match c with
- | inr x => (Leaf x :: fs.1, fs.2)
- | inl 0 => ([::], fs.1 :: fs.2)
- | inl n.+1 => (Node n fs.1 :: head [::] fs.2, behead fs.2)
- end.
-
-Definition decode c := ohead (foldr decode_step ([::], [::]) c).1.
-
-Lemma codeK : pcancel encode decode.
-Proof.
-move=> t; rewrite /decode; set fs := (_, _).
-suffices ->: foldr decode_step fs (encode t) = (t :: fs.1, fs.2) by [].
-elim: t => //= n f IHt in (fs) *; elim: f IHt => //= t f IHf [].
-by rewrite rcons_cat foldr_cat => -> /= /IHf[-> -> ->].
-Qed.
-
-End Def.
-
-End GenTree.
-Implicit Arguments GenTree.codeK [].
-
-Definition tree_eqMixin (T : eqType) := PcanEqMixin (GenTree.codeK T).
-Canonical tree_eqType (T : eqType) := EqType (GenTree.tree T) (tree_eqMixin T).
-
-(* Structures for Types with a choice function, and for Types with countably *)
-(* many elements. The two concepts are closely linked: we indeed make *)
-(* Countable a subclass of Choice, as countable choice is valid in CiC. This *)
-(* apparent redundancy is needed to ensure the consistency of the Canonical *)
-(* inference, as the canonical Choice for a given type may differ from the *)
-(* countable choice for its canonical Countable structure, e.g., for options. *)
-(* The Choice interface exposes two choice functions; for T : choiceType *)
-(* and P : pred T, we provide: *)
-(* xchoose : (exists x, P x) -> T *)
-(* choose : pred T -> T -> T *)
-(* While P (xchoose exP) will always hold, P (choose P x0) will be true if *)
-(* and only if P x0 holds. Both xchoose and choose are extensional in P and *)
-(* do not depend on the witness exP or x0 (provided P x0 holds). Note that *)
-(* xchoose is slightly more powerful, but less convenient to use. *)
-(* However, neither choose nor xchoose are composable: it would not be *)
-(* be possible to extend the Choice structure to arbitrary pairs using only *)
-(* these functions, for instance. Internally, the interfaces provides a *)
-(* subtly stronger operation, Choice.InternalTheory.find, which performs a *)
-(* limited search using an integer parameter only rather than a full value as *)
-(* [x]choose does. This is not a restriction in a constructive theory, where *)
-(* all types are concrete and hence countable. In the case of an axiomatic *)
-(* theory, such as that of the Coq reals library, postulating a suitable *)
-(* axiom of choice suppresses the need for guidance. Nevertheless this *)
-(* operation is just what is needed to make the Choice interface compose. *)
-(* The Countable interface provides three functions; for T : countType we *)
-(* get pickle : T -> nat, and unpickle, pickle_inv : nat -> option T. *)
-(* The functions provide an effective embedding of T in nat: unpickle is a *)
-(* left inverse to pickle, which satisfies pcancel pickle unpickle, i.e., *)
-(* unpickle \o pickle =1 some; pickle_inv is a more precise inverse for which *)
-(* we also have ocancel pickle_inv pickle. Both unpickle and pickle need to *)
-(* be partial functions to allow for possibly empty types such as {x | P x}. *)
-(* The names of these functions underline the correspondence with the *)
-(* notion of "Serializable" types in programming languages. *)
-(* Finally, we need to provide a join class to let type inference unify *)
-(* subType and countType class constraints, e.g., for a countable subType of *)
-(* an uncountable choiceType (the issue does not arise earlier with eqType or *)
-(* choiceType because in practice the base type of an Equality/Choice subType *)
-(* is always an Equality/Choice Type). *)
-
-Module Choice.
-
-Section ClassDef.
-
-Record mixin_of T := Mixin {
- find : pred T -> nat -> option T;
- _ : forall P n x, find P n = Some x -> P x;
- _ : forall P : pred T, (exists x, P x) -> exists n, find P n;
- _ : forall P Q : pred T, P =1 Q -> find P =1 find Q
-}.
-
-Record class_of T := Class {base : Equality.class_of T; mixin : mixin_of T}.
-Local Coercion base : class_of >-> Equality.class_of.
-
-Structure type := Pack {sort; _ : class_of sort; _ : Type}.
-Local Coercion sort : type >-> Sortclass.
-Variables (T : Type) (cT : type).
-Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
-Definition clone c of phant_id class c := @Pack T c T.
-Let xT := let: Pack T _ _ := cT in T.
-Notation xclass := (class : class_of xT).
-
-Definition pack m :=
- fun b bT & phant_id (Equality.class bT) b => Pack (@Class T b m) T.
-
-(* Inheritance *)
-Definition eqType := @Equality.Pack cT xclass xT.
-
-End ClassDef.
-
-Module Import Exports.
-Coercion base : class_of >-> Equality.class_of.
-Coercion sort : type >-> Sortclass.
-Coercion eqType : type >-> Equality.type.
-Canonical eqType.
-Notation choiceType := type.
-Notation choiceMixin := mixin_of.
-Notation ChoiceType T m := (@pack T m _ _ id).
-Notation "[ 'choiceType' 'of' T 'for' cT ]" := (@clone T cT _ idfun)
- (at level 0, format "[ 'choiceType' 'of' T 'for' cT ]") : form_scope.
-Notation "[ 'choiceType' 'of' T ]" := (@clone T _ _ id)
- (at level 0, format "[ 'choiceType' 'of' T ]") : form_scope.
-
-End Exports.
-
-Module InternalTheory.
-Section InternalTheory.
-(* Inner choice function. *)
-Definition find T := find (mixin (class T)).
-
-Variable T : choiceType.
-Implicit Types P Q : pred T.
-
-Lemma correct P n x : find P n = Some x -> P x.
-Proof. by case: T => _ [_ []] //= in P n x *. Qed.
-
-Lemma complete P : (exists x, P x) -> (exists n, find P n).
-Proof. by case: T => _ [_ []] //= in P *. Qed.
-
-Lemma extensional P Q : P =1 Q -> find P =1 find Q.
-Proof. by case: T => _ [_ []] //= in P Q *. Qed.
-
-Fact xchoose_subproof P exP : {x | find P (ex_minn (@complete P exP)) = Some x}.
-Proof.
-by case: (ex_minnP (complete exP)) => n; case: (find P n) => // x; exists x.
-Qed.
-
-End InternalTheory.
-End InternalTheory.
-
-End Choice.
-Export Choice.Exports.
-
-Section ChoiceTheory.
-
-Implicit Type T : choiceType.
-Import Choice.InternalTheory CodeSeq.
-Local Notation dc := decode.
-
-Section OneType.
-
-Variable T : choiceType.
-Implicit Types P Q : pred T.
-
-Definition xchoose P exP := sval (@xchoose_subproof T P exP).
-
-Lemma xchooseP P exP : P (@xchoose P exP).
-Proof. by rewrite /xchoose; case: (xchoose_subproof exP) => x /= /correct. Qed.
-
-Lemma eq_xchoose P Q exP exQ : P =1 Q -> @xchoose P exP = @xchoose Q exQ.
-Proof.
-rewrite /xchoose => eqPQ.
-case: (xchoose_subproof exP) => x; case: (xchoose_subproof exQ) => y /=.
-case: ex_minnP => n; case: ex_minnP => m.
-rewrite -(extensional eqPQ) {1}(extensional eqPQ).
-move=> Qm minPm Pn minQn; suffices /eqP->: m == n by move=> -> [].
-by rewrite eqn_leq minQn ?minPm.
-Qed.
-
-Lemma sigW P : (exists x, P x) -> {x | P x}.
-Proof. by move=> exP; exists (xchoose exP); apply: xchooseP. Qed.
-
-Lemma sig2W P Q : (exists2 x, P x & Q x) -> {x | P x & Q x}.
-Proof.
-move=> exPQ; have [|x /andP[]] := @sigW (predI P Q); last by exists x.
-by have [x Px Qx] := exPQ; exists x; apply/andP.
-Qed.
-
-Lemma sig_eqW (vT : eqType) (lhs rhs : T -> vT) :
- (exists x, lhs x = rhs x) -> {x | lhs x = rhs x}.
-Proof.
-move=> exP; suffices [x /eqP Ex]: {x | lhs x == rhs x} by exists x.
-by apply: sigW; have [x /eqP Ex] := exP; exists x.
-Qed.
-
-Lemma sig2_eqW (vT : eqType) (P : pred T) (lhs rhs : T -> vT) :
- (exists2 x, P x & lhs x = rhs x) -> {x | P x & lhs x = rhs x}.
-Proof.
-move=> exP; suffices [x Px /eqP Ex]: {x | P x & lhs x == rhs x} by exists x.
-by apply: sig2W; have [x Px /eqP Ex] := exP; exists x.
-Qed.
-
-Definition choose P x0 :=
- if insub x0 : {? x | P x} is Some (exist x Px) then
- xchoose (ex_intro [eta P] x Px)
- else x0.
-
-Lemma chooseP P x0 : P x0 -> P (choose P x0).
-Proof. by move=> Px0; rewrite /choose insubT xchooseP. Qed.
-
-Lemma choose_id P x0 y0 : P x0 -> P y0 -> choose P x0 = choose P y0.
-Proof. by move=> Px0 Py0; rewrite /choose !insubT /=; apply: eq_xchoose. Qed.
-
-Lemma eq_choose P Q : P =1 Q -> choose P =1 choose Q.
-Proof.
-rewrite /choose => eqPQ x0.
-do [case: insubP; rewrite eqPQ] => [[x Px] Qx0 _| ?]; last by rewrite insubN.
-by rewrite insubT; apply: eq_xchoose.
-Qed.
-
-Section CanChoice.
-
-Variables (sT : Type) (f : sT -> T).
-
-Lemma PcanChoiceMixin f' : pcancel f f' -> choiceMixin sT.
-Proof.
-move=> fK; pose liftP sP := [pred x | oapp sP false (f' x)].
-pose sf sP := [fun n => obind f' (find (liftP sP) n)].
-exists sf => [sP n x | sP [y sPy] | sP sQ eqPQ n] /=.
-- by case Df: (find _ n) => //= [?] Dx; have:= correct Df; rewrite /= Dx.
-- have [|n Pn] := @complete T (liftP sP); first by exists (f y); rewrite /= fK.
- exists n; case Df: (find _ n) Pn => //= [x] _.
- by have:= correct Df => /=; case: (f' x).
-by congr (obind _ _); apply: extensional => x /=; case: (f' x) => /=.
-Qed.
-
-Definition CanChoiceMixin f' (fK : cancel f f') :=
- PcanChoiceMixin (can_pcan fK).
-
-End CanChoice.
-
-Section SubChoice.
-
-Variables (P : pred T) (sT : subType P).
-
-Definition sub_choiceMixin := PcanChoiceMixin (@valK T P sT).
-Definition sub_choiceClass := @Choice.Class sT (sub_eqMixin sT) sub_choiceMixin.
-Canonical sub_choiceType := Choice.Pack sub_choiceClass sT.
-
-End SubChoice.
-
-Fact seq_choiceMixin : choiceMixin (seq T).
-Proof.
-pose r f := [fun xs => fun x : T => f (x :: xs) : option (seq T)].
-pose fix f sP ns xs {struct ns} :=
- if ns is n :: ns1 then let fr := r (f sP ns1) xs in obind fr (find fr n)
- else if sP xs then Some xs else None.
-exists (fun sP nn => f sP (dc nn) nil) => [sP n ys | sP [ys] | sP sQ eqPQ n].
-- elim: {n}(dc n) nil => [|n ns IHs] xs /=; first by case: ifP => // sPxs [<-].
- by case: (find _ n) => //= [x]; apply: IHs.
-- rewrite -(cats0 ys); elim/last_ind: ys nil => [|ys y IHs] xs /=.
- by move=> sPxs; exists 0; rewrite /= sPxs.
- rewrite cat_rcons => /IHs[n1 sPn1] {IHs}.
- have /complete[n]: exists z, f sP (dc n1) (z :: xs) by exists y.
- case Df: (find _ n)=> // [x] _; exists (code (n :: dc n1)).
- by rewrite codeK /= Df /= (correct Df).
-elim: {n}(dc n) nil => [|n ns IHs] xs /=; first by rewrite eqPQ.
-rewrite (@extensional _ _ (r (f sQ ns) xs)) => [|x]; last by rewrite IHs.
-by case: find => /=.
-Qed.
-Canonical seq_choiceType := Eval hnf in ChoiceType (seq T) seq_choiceMixin.
-
-End OneType.
-
-Section TagChoice.
-
-Variables (I : choiceType) (T_ : I -> choiceType).
-
-Fact tagged_choiceMixin : choiceMixin {i : I & T_ i}.
-Proof.
-pose mkT i (x : T_ i) := Tagged T_ x.
-pose ft tP n i := omap (mkT i) (find (tP \o mkT i) n).
-pose fi tP ni nt := obind (ft tP nt) (find (ft tP nt) ni).
-pose f tP n := if dc n is [:: ni; nt] then fi tP ni nt else None.
-exists f => [tP n u | tP [[i x] tPxi] | sP sQ eqPQ n].
-- rewrite /f /fi; case: (dc n) => [|ni [|nt []]] //=.
- case: (find _ _) => //= [i]; rewrite /ft.
- by case Df: (find _ _) => //= [x] [<-]; have:= correct Df.
-- have /complete[nt tPnt]: exists y, (tP \o mkT i) y by exists x.
- have{tPnt}: exists j, ft tP nt j by exists i; rewrite /ft; case: find tPnt.
- case/complete=> ni tPn; exists (code [:: ni; nt]); rewrite /f codeK /fi.
- by case Df: find tPn => //= [j] _; have:= correct Df.
-rewrite /f /fi; case: (dc n) => [|ni [|nt []]] //=.
-rewrite (@extensional _ _ (ft sQ nt)) => [|i].
- by case: find => //= i; congr (omap _ _); apply: extensional => x /=.
-by congr (omap _ _); apply: extensional => x /=.
-Qed.
-Canonical tagged_choiceType :=
- Eval hnf in ChoiceType {i : I & T_ i} tagged_choiceMixin.
-
-End TagChoice.
-
-Fact nat_choiceMixin : choiceMixin nat.
-Proof.
-pose f := [fun (P : pred nat) n => if P n then Some n else None].
-exists f => [P n m | P [n Pn] | P Q eqPQ n] /=; last by rewrite eqPQ.
- by case: ifP => // Pn [<-].
-by exists n; rewrite Pn.
-Qed.
-Canonical nat_choiceType := Eval hnf in ChoiceType nat nat_choiceMixin.
-
-Definition bool_choiceMixin := CanChoiceMixin oddb.
-Canonical bool_choiceType := Eval hnf in ChoiceType bool bool_choiceMixin.
-Canonical bitseq_choiceType := Eval hnf in [choiceType of bitseq].
-
-Definition unit_choiceMixin := CanChoiceMixin bool_of_unitK.
-Canonical unit_choiceType := Eval hnf in ChoiceType unit unit_choiceMixin.
-
-Definition option_choiceMixin T := CanChoiceMixin (@seq_of_optK T).
-Canonical option_choiceType T :=
- Eval hnf in ChoiceType (option T) (option_choiceMixin T).
-
-Definition sig_choiceMixin T (P : pred T) : choiceMixin {x | P x} :=
- sub_choiceMixin _.
-Canonical sig_choiceType T (P : pred T) :=
- Eval hnf in ChoiceType {x | P x} (sig_choiceMixin P).
-
-Definition prod_choiceMixin T1 T2 := CanChoiceMixin (@tag_of_pairK T1 T2).
-Canonical prod_choiceType T1 T2 :=
- Eval hnf in ChoiceType (T1 * T2) (prod_choiceMixin T1 T2).
-
-Definition sum_choiceMixin T1 T2 := PcanChoiceMixin (@opair_of_sumK T1 T2).
-Canonical sum_choiceType T1 T2 :=
- Eval hnf in ChoiceType (T1 + T2) (sum_choiceMixin T1 T2).
-
-Definition tree_choiceMixin T := PcanChoiceMixin (GenTree.codeK T).
-Canonical tree_choiceType T := ChoiceType (GenTree.tree T) (tree_choiceMixin T).
-
-End ChoiceTheory.
-
-Prenex Implicits xchoose choose.
-Notation "[ 'choiceMixin' 'of' T 'by' <: ]" :=
- (sub_choiceMixin _ : choiceMixin T)
- (at level 0, format "[ 'choiceMixin' 'of' T 'by' <: ]") : form_scope.
-
-Module Countable.
-
-Record mixin_of (T : Type) : Type := Mixin {
- pickle : T -> nat;
- unpickle : nat -> option T;
- pickleK : pcancel pickle unpickle
-}.
-
-Definition EqMixin T m := PcanEqMixin (@pickleK T m).
-Definition ChoiceMixin T m := PcanChoiceMixin (@pickleK T m).
-
-Section ClassDef.
-
-Record class_of T := Class { base : Choice.class_of T; mixin : mixin_of T }.
-Local Coercion base : class_of >-> Choice.class_of.
-
-Structure type : Type := Pack {sort : Type; _ : class_of sort; _ : Type}.
-Local Coercion sort : type >-> Sortclass.
-Variables (T : Type) (cT : type).
-Definition class := let: Pack _ c _ as cT' := cT return class_of cT' in c.
-Definition clone c of phant_id class c := @Pack T c T.
-Let xT := let: Pack T _ _ := cT in T.
-Notation xclass := (class : class_of xT).
-
-Definition pack m :=
- fun bT b & phant_id (Choice.class bT) b => Pack (@Class T b m) T.
-
-Definition eqType := @Equality.Pack cT xclass xT.
-Definition choiceType := @Choice.Pack cT xclass xT.
-
-End ClassDef.
-
-Module Exports.
-Coercion base : class_of >-> Choice.class_of.
-Coercion mixin : class_of >-> mixin_of.
-Coercion sort : type >-> Sortclass.
-Coercion eqType : type >-> Equality.type.
-Canonical eqType.
-Coercion choiceType : type >-> Choice.type.
-Canonical choiceType.
-Notation countType := type.
-Notation CountType T m := (@pack T m _ _ id).
-Notation CountMixin := Mixin.
-Notation CountChoiceMixin := ChoiceMixin.
-Notation "[ 'countType' 'of' T 'for' cT ]" := (@clone T cT _ idfun)
- (at level 0, format "[ 'countType' 'of' T 'for' cT ]") : form_scope.
-Notation "[ 'countType' 'of' T ]" := (@clone T _ _ id)
- (at level 0, format "[ 'countType' 'of' T ]") : form_scope.
-
-End Exports.
-
-End Countable.
-Export Countable.Exports.
-
-Definition unpickle T := Countable.unpickle (Countable.class T).
-Definition pickle T := Countable.pickle (Countable.class T).
-Implicit Arguments unpickle [T].
-Prenex Implicits pickle unpickle.
-
-Section CountableTheory.
-
-Variable T : countType.
-
-Lemma pickleK : @pcancel nat T pickle unpickle.
-Proof. exact: Countable.pickleK. Qed.
-
-Definition pickle_inv n :=
- obind (fun x : T => if pickle x == n then Some x else None) (unpickle n).
-
-Lemma pickle_invK : ocancel pickle_inv pickle.
-Proof.
-by rewrite /pickle_inv => n; case def_x: (unpickle n) => //= [x]; case: eqP.
-Qed.
-
-Lemma pickleK_inv : pcancel pickle pickle_inv.
-Proof. by rewrite /pickle_inv => x; rewrite pickleK /= eqxx. Qed.
-
-Lemma pcan_pickleK sT f f' :
- @pcancel T sT f f' -> pcancel (pickle \o f) (pcomp f' unpickle).
-Proof. by move=> fK x; rewrite /pcomp pickleK /= fK. Qed.
-
-Definition PcanCountMixin sT f f' (fK : pcancel f f') :=
- @CountMixin sT _ _ (pcan_pickleK fK).
-
-Definition CanCountMixin sT f f' (fK : cancel f f') :=
- @PcanCountMixin sT _ _ (can_pcan fK).
-
-Definition sub_countMixin P sT := PcanCountMixin (@valK T P sT).
-
-Definition pickle_seq s := CodeSeq.code (map (@pickle T) s).
-Definition unpickle_seq n := Some (pmap (@unpickle T) (CodeSeq.decode n)).
-Lemma pickle_seqK : pcancel pickle_seq unpickle_seq.
-Proof. by move=> s; rewrite /unpickle_seq CodeSeq.codeK (map_pK pickleK). Qed.
-
-Definition seq_countMixin := CountMixin pickle_seqK.
-Canonical seq_countType := Eval hnf in CountType (seq T) seq_countMixin.
-
-End CountableTheory.
-
-Notation "[ 'countMixin' 'of' T 'by' <: ]" :=
- (sub_countMixin _ : Countable.mixin_of T)
- (at level 0, format "[ 'countMixin' 'of' T 'by' <: ]") : form_scope.
-
-Section SubCountType.
-
-Variables (T : choiceType) (P : pred T).
-Import Countable.
-
-Structure subCountType : Type :=
- SubCountType {subCount_sort :> subType P; _ : mixin_of subCount_sort}.
-
-Coercion sub_countType (sT : subCountType) :=
- Eval hnf in pack (let: SubCountType _ m := sT return mixin_of sT in m) id.
-Canonical sub_countType.
-
-Definition pack_subCountType U :=
- fun sT cT & sub_sort sT * sort cT -> U * U =>
- fun b m & phant_id (Class b m) (class cT) => @SubCountType sT m.
-
-End SubCountType.
-
-(* This assumes that T has both countType and subType structures. *)
-Notation "[ 'subCountType' 'of' T ]" :=
- (@pack_subCountType _ _ T _ _ id _ _ id)
- (at level 0, format "[ 'subCountType' 'of' T ]") : form_scope.
-
-Section TagCountType.
-
-Variables (I : countType) (T_ : I -> countType).
-
-Definition pickle_tagged (u : {i : I & T_ i}) :=
- CodeSeq.code [:: pickle (tag u); pickle (tagged u)].
-Definition unpickle_tagged s :=
- if CodeSeq.decode s is [:: ni; nx] then
- obind (fun i => omap (@Tagged I i T_) (unpickle nx)) (unpickle ni)
- else None.
-Lemma pickle_taggedK : pcancel pickle_tagged unpickle_tagged.
-Proof.
-by case=> i x; rewrite /unpickle_tagged CodeSeq.codeK /= pickleK /= pickleK.
-Qed.
-
-Definition tag_countMixin := CountMixin pickle_taggedK.
-Canonical tag_countType := Eval hnf in CountType {i : I & T_ i} tag_countMixin.
-
-End TagCountType.
-
-(* The remaining Canonicals for standard datatypes. *)
-Section CountableDataTypes.
-
-Implicit Type T : countType.
-
-Lemma nat_pickleK : pcancel id (@Some nat). Proof. by []. Qed.
-Definition nat_countMixin := CountMixin nat_pickleK.
-Canonical nat_countType := Eval hnf in CountType nat nat_countMixin.
-
-Definition bool_countMixin := CanCountMixin oddb.
-Canonical bool_countType := Eval hnf in CountType bool bool_countMixin.
-Canonical bitseq_countType := Eval hnf in [countType of bitseq].
-
-Definition unit_countMixin := CanCountMixin bool_of_unitK.
-Canonical unit_countType := Eval hnf in CountType unit unit_countMixin.
-
-Definition option_countMixin T := CanCountMixin (@seq_of_optK T).
-Canonical option_countType T :=
- Eval hnf in CountType (option T) (option_countMixin T).
-
-Definition sig_countMixin T (P : pred T) := [countMixin of {x | P x} by <:].
-Canonical sig_countType T (P : pred T) :=
- Eval hnf in CountType {x | P x} (sig_countMixin P).
-Canonical sig_subCountType T (P : pred T) :=
- Eval hnf in [subCountType of {x | P x}].
-
-Definition prod_countMixin T1 T2 := CanCountMixin (@tag_of_pairK T1 T2).
-Canonical prod_countType T1 T2 :=
- Eval hnf in CountType (T1 * T2) (prod_countMixin T1 T2).
-
-Definition sum_countMixin T1 T2 := PcanCountMixin (@opair_of_sumK T1 T2).
-Canonical sum_countType T1 T2 :=
- Eval hnf in CountType (T1 + T2) (sum_countMixin T1 T2).
-
-Definition tree_countMixin T := PcanCountMixin (GenTree.codeK T).
-Canonical tree_countType T := CountType (GenTree.tree T) (tree_countMixin T).
-
-End CountableDataTypes.